313
Views
2
CrossRef citations to date
0
Altmetric
Articles

Human error identification and risk prioritization in LPG unloading operations

ORCID Icon & ORCID Icon

References

  • Pope A. Essay on criticism. JM Dent; 1903.
  • Dutta S. India becomes second-largest LPG consumer. Energy News, ET EnergyWorld; 2017.
  • Petroleum Planning & Analysis Cell. LPG profile (data on LPG marketing and distribution); 2021.
  • Alencar JRB, Barbosa RAP, de Souza MB, Jr. Evaluation of accidents with domino effect in LPG storage areas. Rev Eng Térmica. 2005;4:8–12.
  • Bariha N, Mishra IM, Srivastava VC. Fire and explosion hazard analysis during surface transport of liquefied petroleum gas (LPG): a case study of LPG truck tanker accident in Kannur, Kerala, India. J Loss Prev Process Ind. 2016;40:449–460. doi:10.1016/j.jlp.2016.01.020
  • Kourniotis SP, Kiranoudis CT, Markatos NC. Statistical analysis of domino chemical accidents. J Hazard Mater. 2000;71:239–252. doi:10.1016/S0304-3894(99)00081-3
  • Kinsman P, Lewis J. Report on a second study of pipeline accidents using the Health and Safety Executive’s risk assessment programs MISHAP and PIPERS; 2002.
  • Atkinson G, Cowpe E, Halliday J, et al. A review of very large vapour cloud explosions: cloud formation and explosion severity. J Loss Prev Process Ind. 2017;48:367–375. doi:10.1016/j.jlp.2017.03.021
  • Abdolhamidzadeh B, Abbasi T, Rashtchian D, et al. Domino effect in process-industry accidents – an inventory of past events and identification of some patterns. J Loss Prev Process Ind. 2011;24:575–593. doi:10.1016/j.jlp.2010.06.013
  • Darbra RM, Palacios A, Casal J. Domino effect in chemical accidents: main features and accident sequences. J Hazard Mater. 2010;183:565–573. doi:10.1016/j.jhazmat.2010.07.061
  • Gomez-Mares M, Zárate L, Casal J. Jet fires and the domino effect. Fire Saf J. 2008;43:583–588. doi:10.1016/j.firesaf.2008.01.002
  • Khan FI, Abbasi SA. Major accidents in process industries and an analysis of causes and consequences. J Loss Prev Process Ind. 1999;12:361–378. doi:10.1016/S0950-4230(98)00062-X
  • Vilchez JA, Sevilla S, Montiel H, et al. Historical analysis of accidents in chemical plants and in the transportation of hazardous materials. J Loss Prev Process Ind. 1995;8:87–96. doi:10.1016/0950-4230(95)00006-M
  • Chang JI, Lin C-C. A study of storage tank accidents. J Loss Prev Process Ind. 2006;19:51–59. doi:10.1016/j.jlp.2005.05.015
  • Gautam SS, Saxena PK. Survey of criticality of risk from LPG storage tanks at user-sites in north India. Indosh News. 2001;6:1–8.
  • Gallab M, Tkiouat M, Bouloiz H, et al. Risk assessment in LPG loading operations by simulation. In: 7th Annual Conference on Industrial Engineering and Operations Management IEOM 2017. April 11-13, 2017. Rabat, Morocco,: IEOM Society; 2017. p. 783–793.
  • Salamonowicz Z, Majder-Łopatka M. Emergency scenarios during accidents involving LPG. BLEVE explosion mechanism. Sci Res Cent Fire Prot Józefa Tuliszkowski – Natl Res Inst. 2013;2:31–39.
  • Embrey DE. SHERPA: a systematic human error reduction and prediction approach. Proc Int Top Meet Adv Hum factors Nucl Power Syst. 1986;18(17):184–193.
  • Kirwan B. A guide to practical human reliability assessment. 1st ed. CRC Press; 1994.
  • Joice P, Hanna GB, Cuschieri A. Errors enacted during endoscopic surgery – a human reliability analysis. Appl Ergon. 1998;29:409–414. doi:10.1016/S0003-6870(98)00016-7
  • Ghasemi M, Nasleseraji J, Hoseinabadi S, et al. Application of SHERPA to identify and prevent human errors in control units of petrochemical industry. Int J Occup Saf Ergon. 2013;19:203–209. doi:10.1080/10803548.2013.11076979
  • Harris D, Stanton NA, Marshall A, et al. Using SHERPA to predict design-induced error on the flight deck. Aerosp Sci Technol. 2005;9:525–532. doi:10.1016/j.ast.2005.04.002
  • Ghasemi M, Khoshakhlagh AH, Mahmudi S, et al. Identification and assessment of medical errors in the triage area of an educational hospital using the SHERPA technique in Iran. Int J Occup Saf Ergon. 2015;21:382–390. doi:10.1080/10803548.2015.1073431
  • Swain AD, Guttmann HE. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report. Sandia National Labs; 1983.
  • Kirwan B. Human error identification in human reliability assessment. Part 1: overview of approaches. Appl Ergon. 1992;23:299–318. doi:10.1016/0003-6870(92)90292-4
  • Williams JC. Data-based method for assessing and reducing human error to improve operational performance. In: IEEE Conference on Human Factors and Power Plants Vol. 20. United States: IEEE; 1988. p. 436–450.
  • Mandal S, Singh K, Behera RK, et al. Human error identification and risk prioritization in overhead crane operations using HTA, SHERPA and fuzzy VIKOR method. Expert Syst Appl. 2015;42:7195–7206. doi:10.1016/j.eswa.2015.05.033
  • Embrey DE. Use of performance shaping factors and quantified expert judgment in the evaluation of human reliability: an initial appraisal. Brookhaven National Lab; 1983.
  • Hollnagel E. Cognitive reliability and error analysis method (CREAM). Elsevier; 1998.
  • Kirwan B. Human error identification techniques for risk assessment of high risk systems – part 1: review and evaluation of techniques. Appl Ergon. 1998.
  • Kirwan B. Human error identification in human reliability assessment. Part 2: detailed comparison of techniques. Appl Ergon. 1992;23:371–381. doi:10.1016/0003-6870(92)90368-6
  • Baber C, Stanton NA. Human error identification techniques applied to public technology: predictions compared with observed use. Appl Ergon. 1996;27:119–131. doi:10.1016/0003-6870(95)00067-4
  • Stanton NA, Stevenage SV. Learning to predict human error: issues of acceptability, reliability and validity. Ergonomics. 1998;41:1737–1756. doi:10.1080/001401398186162
  • Lane R, Stanton NA, Harrison D. Applying hierarchical task analysis to medication administration errors. Appl Ergon. 2006;37:669–679. doi:10.1016/j.apergo.2005.08.001
  • MIL-P-1629 – procedures for performing a failure mode effect and critical analysis. United States Department of Defense; 1949. (Dep Def (US) MIL-P-1629).
  • Stamatis DH. Failure mode and effect analysis: FMEA from theory to execution. Quality Press; 2003.
  • Musa JD. Software reliability engineering: more reliable software, faster and cheaper. Tata McGraw-Hill Education; 2004.
  • Chin K-S, Chan A, Yang J-B. Development of a fuzzy FMEA based product design system. Int J Adv Manuf Technol. 2008;36:633–649. doi:10.1007/s00170-006-0898-3
  • Chang K-H, Cheng C-H. Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. J Intell Manuf. 2011;22:113–129. doi:10.1007/s10845-009-0266-x
  • Teng SG, Ho SM. Failure mode and effects analysis: an integrated approach for product design and process control. Int J Qual Reliab Manag. 1996.
  • Moreira AC, Ferreira LMDF, Silva P. A case study on FMEA-based improvement for managing new product development risk. Int J Qual Reliab Manag. 2020.
  • Geramian A, Abraham A, Ahmadi Nozari M. Fuzzy logic-based FMEA robust design: a quantitative approach for robustness against groupthink in group/team decision-making. Int J Prod Res. 2019;57:1331–1344. doi:10.1080/00207543.2018.1471236
  • Jain K. Use of failure mode effect analysis (FMEA) to improve medication management process. Int J Health Care Qual Assur. 2017.
  • Anjalee JAL, Rutter V, Samaranayake NR. Application of failure mode and effect analysis (FMEA) to improve medication safety: a systematic review. Postgrad Med J. 2021;97:168–174. doi:10.1136/postgradmedj-2019-137484
  • Chanamool N, Naenna T. Fuzzy FMEA application to improve decision-making process in an emergency department. Appl Soft Comput. 2016;43:441–453. doi:10.1016/j.asoc.2016.01.007
  • Chiozza ML, Ponzetti C. FMEA: a model for reducing medical errors. Clin Chim Acta. 2009;404:75–78. doi:10.1016/j.cca.2009.03.015
  • Dağsuyu C, Göçmen E, Narlı M, et al. Classical and fuzzy FMEA risk analysis in a sterilization unit. Comput Ind Eng. 2016;101:286–294. doi:10.1016/j.cie.2016.09.015
  • Mirghafoori SH, Izadi MR, Daei A. Analysis of the barriers affecting the quality of electronic services of libraries by VIKOR, FMEA and entropy combined approach in an intuitionistic-fuzzy environment. J Intell Fuzzy Syst. 2018;34:2441–2451. doi:10.3233/JIFS-171695
  • Abdelgawad M, Fayek AR. Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. J Constr Eng Manag. 2010;136:1028–1036. doi:10.1061/(ASCE)CO.1943-7862.0000210
  • Teng SG, Ho SM, Shumar D, et al. Implementing FMEA in a collaborative supply chain environment. Int J Qual Reliab Manag. 2006.
  • Press D. Guidelines for failure mode and effects analysis (FMEA), for automotive, aerospace, and general manufacturing industries. CRC Press; 2003.
  • Ghasemi S, Mahmoudvand R, Yavari K. Application of the FMEA in insurance of high-risk industries: a case study of Iran’s gas refineries. Stoch Environ Res Risk Assess. 2016;30:737–745. doi:10.1007/s00477-015-1104-7
  • Yang Z, Bonsall S, Wang J. Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans Reliab. 2008;57:517–528. doi:10.1109/TR.2008.928208
  • Garcia PAA, Schirru R. A fuzzy data envelopment analysis approach for FMEA. Prog Nucl Energy. 2005;46:359–373. doi:10.1016/j.pnucene.2005.03.016
  • Franceschini F, Galetto M. A new approach for evaluation of risk priorities of failure modes in FMEA. Int J Prod Res. 2001;39:2991–3002. doi:10.1080/00207540110056162
  • Xu K, Tang LC, Xie M, et al. Fuzzy assessment of FMEA for engine systems. Reliab Eng Syst Saf. 2002;75:17–29. doi:10.1016/S0951-8320(01)00101-6
  • Mandal S, Maiti J. Risk analysis using FMEA: fuzzy similarity value and possibility theory based approach. Expert Syst Appl. 2014;41:3527–3537. doi:10.1016/j.eswa.2013.10.058
  • Liu HC, Liu L, Liu N, et al. Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Syst Appl. 2012;39:12926–12934. doi:10.1016/j.eswa.2012.05.031
  • Liu HT, Tsai Y-L. A fuzzy risk assessment approach for occupational hazards in the construction industry. Saf Sci. 2012;50:1067–1078. doi:10.1016/j.ssci.2011.11.021
  • Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338–353. doi:10.1016/S0019-9958(65)90241-X
  • Bellman RE, Zadeh LA. Decision-making in a fuzzy environment. Manage Sci. 1970;17:B-141.
  • Amin F, Fahmi A, Abdullah S, et al. Triangular cubic linguistic hesitant fuzzy aggregation operators and their application in group decision making. J Intell Fuzzy Syst. 2018;34:2401–2416. doi:10.3233/JIFS-171567
  • Afful-Dadzie E, Nabareseh S, Oplatkova ZK. Fuzzy VIKOR approach: evaluating quality of internet health information. In: 2014 Federated Conference on Computer Science and Information Systems FedCSIS 2014. IEEE; 2014. p. 183–190.
  • Liao H, Xu Z, Zeng XJ. Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans Fuzzy Syst. 2015;23:1343–1355. doi:10.1109/TFUZZ.2014.2360556
  • Faizi S, Rashid T, Sałabun W, et al. Decision making with uncertainty using hesitant fuzzy sets. Int J Fuzzy Syst. 2018;20:93–103. doi:10.1007/s40815-017-0313-2
  • Rashid T, Husnine SM. Multicriteria group decision making by using trapezoidal valued hesitant fuzzy sets. Sci World J. 2014;2014.
  • Qian G, Wang H, Feng X. Generalized hesitant fuzzy sets and their application in decision support system. Knowledge-Based Syst. 2013;37:357–365. doi:10.1016/j.knosys.2012.08.019
  • Atanassov KT. Interval valued intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets. Springer; 1999. p. 139–177.
  • Zhou H, Wang J, Li X-E, et al. Intuitionistic hesitant linguistic sets and their application in multi-criteria decision-making problems. Oper Res. 2016;16:131–160. doi:10.1016/j.ejor.2015.08.030
  • Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning – I. Inf Sci (NY). 1975;8:199–249. doi:10.1016/0020-0255(75)90036-5
  • Ross TJ. Fuzzy logic with engineering applications. Wiley Online Library; 2004.
  • Wu D. Twelve considerations in choosing between Gaussian and trapezoidal membership functions in interval type-2 fuzzy logic controllers. In: 2012 IEEE International Conference on Fuzzy Systems. IEEE; 2012. p. 1–8.
  • Czekalski P. Evolution-fuzzy rule based system with parameterized consequences. Int J Appl Math Comput Sci. 2006;16:373–385.
  • Rutkowska A. Influence of membership function’s shape on portfolio optimization results. J Artif Intell Soft Comput Res. 2016;6:45–54. doi:10.1515/jaiscr-2016-0005
  • Arumugam D. Re: What is advatange of trapezoidal fuzzy number? [Internet]; 2019. Available from: https://www.researchgate.net/post/What-is-advatange-of-trapezoidal-fuzzy-number/5d26d50ca5a2e2046e40b535/citation/download
  • Wyrzykowski R, Deelman E, Dongarra J, et al. Parallel processing and applied mathematics: 11th International Conference, PPAM 2015; 2015 Sep 6–9; Krakow. Revised selected papers, Part I. Springer; 2016.
  • Kim Y, Chung E-S. Fuzzy VIKOR approach for assessing the vulnerability of the water supply to climate change and variability in South Korea. Appl Math Model. 2013;37:9419–9430. doi:10.1016/j.apm.2013.04.040
  • Girubha RJ, Vinodh S. Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Mater Des. 2012;37:478–486. doi:10.1016/j.matdes.2012.01.022
  • Shemshadi A, Shirazi H, Toreihi M, et al. A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst Appl. 2011;38:12160–12167. doi:10.1016/j.eswa.2011.03.027
  • Vinodh S, Sarangan S, Vinoth SC. Application of fuzzy compromise solution method for fit concept selection. Appl Math Model. 2014;38:1052–1063. doi:10.1016/j.apm.2013.07.027
  • Alguliyev RM, Aliguliyev RM, Mahmudova RS. Multicriteria personnel selection by the modified fuzzy VIKOR method. Milanova MG, editor. Sci World J. 2015;2015:1–16. doi:10.1155/2015/612767
  • Opricovic S, Tzeng GH. Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res. 2004;156:445–455. doi:10.1016/S0377-2217(03)00020-1
  • Opricovic S. Multicriteria optimization of civil engineering systems. Fac Civ Eng Belgrade. 1998;2:5–21.
  • Duckstein L, Opricovic S. Multiobjective optimization in river basin development. Water Resour Res. 1980;16:14–20. doi:10.1029/WR016i001p00014
  • Zeleny M. Multiple criteria decision making Kyoto 1975. Springer Science & Business Media; 2012.
  • Liu HC, You JX, You XY, et al. A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl Soft Comput J. 2015;28:579–588. doi:10.1016/j.asoc.2014.11.036
  • Opricovic S, Tzeng G-H. Extended VIKOR method in comparison with outranking methods. Eur J Oper Res. 2007;178:514–529. doi:10.1016/j.ejor.2006.01.020
  • Oil Industry Safety Directorate. OISD Case Studies [Internet]; 2017 [cited 2020 Aug 27]. Available from: https://www.oisd.gov.in/oisd-case-studies
  • NIOSH. Fatality assessment and control evaluation (FACE) [Internet]; 2020. Available from: https://www.cdc.gov/niosh/face/default.html
  • Petroleum and Natural Gas Regulatory Board (PNGRB) [Internet]. Available from: https://www.pngrb.gov.in/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.