295
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effect of triclosan exposure on mortality and behavioral changes of Poecilia reticulata and Danio rerio

&
Pages 1327-1341 | Received 26 Oct 2017, Accepted 28 Nov 2017, Published online: 18 Jan 2018

References

  • Anita S, Sobha K, and Tilak KS. 2010. A study on acute toxicity, oxygen consumption and behavioural changes in the three major Carps, Labeo rohita, Catla catla and Cirrhinus mrigala exposed to fenvalerate. Biores Bull 1:35–43
  • Barros S, Montes R, Quintana JB, et al. 2017. Chronic effects of triclocarban in the Amphipod Gammarus locusta: Behavioural and biochemical impairment. Ecotoxicol Environ Saf 135:276–83. https://doi.org/10.1016/j.ecoenv.2016.10.013
  • Barry MJ. 2012. Application of a novel open-source program for measuring the effects of toxicants on the swimming behavior of large groups of unmarked fish. Chemosphere 86:938–44. https://doi.org/10.1016/j.chemosphere.2011.11.011
  • Beauvais SL, Jones SB, Parris JT, et al. 2001. Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 49:84–90. https://doi.org/10.1006/eesa.2000.2032
  • Bedoux G, Roig B, Thomas O, et al. 2012. Occurrence and toxicity of antimicrobial triclosan and byproducts in the environment. Environ Sci Pollut Res 19:1044–65. https://doi.org/10.1007/s11356-011-0632-z
  • Bennett ER, Ross PS, Huff D, et al. 2009. Chlorinated and brominated organic contaminants and metabolites in the plasma and diet of a captive killer whale (Orcinus orca). Mar Pollut Bull 58:1078–83. https://doi.org/10.1016/j.marpolbul.2009.05.005
  • Binelli A, Cogni D, Parolini M, et al. 2009. In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in Zebra mussel hemocytes. Aquat Toxicol 91:238–44. https://doi.org/10.1016/j.aquatox.2008.11.008
  • Brausch JM and Rand GM. 2011. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82:1518–32. https://doi.org/10.1016/j.chemosphere.2010.11.018
  • Chen J, Qu R, Pan X, et al. 2016. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. Water Res 103:215–23. https://doi.org/10.1016/j.watres.2016.07.041
  • Chen ZF, Ying GG, Liu YS, et al. 2014. Triclosan as a surrogate for household biocides: An investigation into biocides in aquatic environments of a highly urbanized region. Water Res 58:269–79. https://doi.org/10.1016/j.watres.2014.03.072
  • Cortez FS, Seabra Pereira CD, Santos AR, et al. 2012. Biological effects of environmentally relevant concentrations of the pharmaceutical triclosan in the marine mussel Perna perna (Linnaeus, 1758). Environ Pollut 168:145–50. https://doi.org/10.1016/j.envpol.2012.04.024
  • Dann AB and Hontela A. 2011. Triclosan: Environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311. https://doi.org/10.1002/jat.1660
  • DeLorenzo ME, Keller JM, Arthur CD, et al. 2008. Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyltriclosan in estuarine systems. Environ Toxicol 23:224–32. https://doi.org/10.1002/tox.20327
  • Dolezelova P, Macova S, Pistekova V, et al. 2008. Comparison of the sensitivity of Danio rerio and Poecilia reticulata to silver nitrate in short-term tests. Interdiscip Toxicol 1:200–2. https://doi.org/10.2478/v10102-010-0040-0
  • Escarrone ALV, Caldas SS, Primel EG, et al. 2016. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. Sci Total Environ 560–561:218–24. https://doi.org/10.1016/j.scitotenv.2016.04.039
  • Fair P, Lee HB, Adams J, et al. 2009. Occurrence of triclosan in plasma of wild atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–54. https://doi.org/10.1016/j.envpol.2009.04.002
  • Foran CM, Bennett ER, and Benson WH. 2000. Developmental evaluation of a potential nonsteroidal estrogen: Triclosan. Mar Environ Res 50:153–6. https://doi.org/10.1016/S0141-1136(00)00080-5
  • Fritsch EB, Connon RE, Werner I, et al. 2013. Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promelas). Environ Sci Technol 47:2008–17. https://doi.org/10.1021/es303790b
  • Fu Q, Sanganyado E, Ye Q, et al. 2016. Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil. Environ Pollut 210:137–44. https://doi.org/10.1016/j.envpol.2015.12.003
  • Gallo D, Merendino A, Keizer J, et al. 1995. Acute toxicity of two carbamates to the guppy (Poecilia reticulata) and the zebrafish (Brachydanio rerio). Sci Total Environ 171:131–6. https://doi.org/10.1016/0048-9697(95)04681-X
  • Gonzalez-Pleiter M, Rioboo C, Reguera M, et al. 2017. Calcium mediates the cellular response of Chlamydomonas reinhardtiito the emerging aquatic pollutant triclosan. Aquat Toxicol 186:50–66. https://doi.org/10.1016/j.aquatox.2017.02.021
  • Gruber SJ and Munn MD. 1998. Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (che) inhibition in common carp (Cyprinus carpio). Arch Environ Contam Toxicol 35:391–6. https://doi.org/10.1007/s002449900393
  • Guo RX, Ren XK, and Ren HQ. 2012. Assessment the toxic effects of dimethoate to rotifer using swimming behavior. Bull Environ Contam Toxicol 89:568–71. https://doi.org/10.1007/s00128-012-0712-x
  • Halappa R and David M. 2009. Behavioural responses of the freshwater fish, Cyprinus carpio (Linnaeus) following sublethal exposure to chlorpyrifos. Turk J Fish Aquat Sci 9:233–8. https://doi.org/10.4194/trjfas.2009.0218
  • Halden RU. 2014. On the need and speed of regulating triclosan and triclocarban in the United States. Environ Sci Technol 48:3603–11. https://doi.org/10.1021/es500495p
  • Hassan M, Shah Norhan NA, Mohd Daud H, et al. 2015. Behavioral and histopathological changes of common Carp (Cyprinus carpio) exposed to paraquat. J Fish Livestock Product 3:1–3
  • Huang Y, Zhang J, Han X, et al. 2014. The use of zebrafish (Danio rerio) behavioral responses in identifying sublethal exposures to deltamethrin. Int J Environ Res Public Health 11:3650–60. https://doi.org/10.3390/ijerph110403650
  • Ishibashi H, Matsumura N, Hirano M, et al. 2004. Effects of triclosan on the early life stages and reproduction of Medaka oryzias latipes and induction of Hepatic vitellogenin. Aquat Toxicol 67:167–79. https://doi.org/10.1016/j.aquatox.2003.12.005
  • Kang IJ, Moroishi J, Nakamura A, et al. 2009. Biological monitoring for detection of toxic chemicals in water by the swimming behavior of small freshwater fish. J Facul Agri Kyushu Univ 54:209–14
  • Kim JW, Ishibashi H, Yamauchi R, et al. 2009. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyrus) and fish (Oryzias latipes). J Toxicol Sci 34:227–32. https://doi.org/10.2131/jts.34.227
  • Kookana RS, Shareef A, Fernandes MB, et al. 2013. Bioconcentration of triclosan and methyl-triclosan in marine mussels (Mytilus galloprovincialis) under laboratory conditions and in metropolitan waters of gulf St. Vincent South Australia. Mar Pollut Bull 74:66–72. https://doi.org/10.1016/j.marpolbul.2013.07.030
  • Ku P, Wu X, Nie X, et al. 2014. Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): Expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system. Comp Biochem Physiol C Toxicol Pharmacol 166:105–14. https://doi.org/10.1016/j.cbpc.2014.07.006
  • Marigoudar SR, Ahmed N, and David M. 2009. Impact of cypermethrin on behavioural responses in the freshwater teleost, Labeo rohita (ham.). World J Zool 4:19–23
  • Martinez-Paz P, Morales M, Urien J, et al. 2017. Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius squatic larvae. Ecotoxicol Environ Saf 140:185–90. https://doi.org/10.1016/j.ecoenv.2017.02.047
  • Michalec F, Holzner M, Menu D, et al. 2013. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants. Aquat Toxicol 138–139:129–38. https://doi.org/10.1016/j.aquatox.2013.05.007
  • Montaseri H and Forbes PBC. 2016. A review of monitoring methods for triclosan and its occurrence in aquatic environments. Trends Anal Chem 85:221–31. https://doi.org/10.1016/j.trac.2016.09.010
  • Nagaraju B, Sudhakar P, Anitha A, et al. 2011. Toxicity evaluation and behavioural studies of freshwater fish Labeo rohita exposed to rimon. Inter J Res Pharma Biomed Sci 2:722–7
  • Nagaraju B and Venkata Rathnamma V. 2014. Determination of median lethal concentrations (LC50) of freshwater fish Labeo rohita (hamilton) for carbosulfan and its behavioral impacts. J Stress Physiol Biochem 10:218–31
  • Nakano H, Hirakawa K, and Shoji J. 2015. Development of swimming speed and schooling behavior of juvenile white rockfish (Sebastes cheni) in relation to ambient light intensity. Fish Bull 113:121–8. https://doi.org/10.7755/FB.113.2.2
  • Nassef M, Matsumoto S, Seki M, et al. 2009. Pharmaceuticals and personal care products toxicity to Japanese Medaka fish (Oryzias latipes). J Facul Agri Kyushu Uni 54:407–11
  • Nassef M, Matsumoto S, Seki M, et al. 2010. Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese Medaka fish (Oryzias latipes). Chemosphere 80:1095–100. https://doi.org/10.1016/j.chemosphere.2010.04.073
  • Neo YY, Parie L, Bakker F, et al. 2015. Behavioral changes in response to sound exposure and no spatial avoidance of noisy conditions in captive zebrafish. Front Behav Neurosci 9:1–11. https://doi.org/10.3389/fnbeh.2015.00028
  • Ni Y, Zhang Z, Zhang Q, et al. 2005. Distribution patterns of PCDD/Fs in chlorinated chemicals. Chemosphere 60:779–84. https://doi.org/10.1016/j.chemosphere.2005.04.017
  • Novo A, Andre S, Viana P, et al. 2013. Antibiotic resistance antimicrobial residues and bacterial community composition in urban wastewater. Water Res 47:1875–87. https://doi.org/10.1016/j.watres.2013.01.010
  • Olaniyan LWB, Mkwetshana N, and Okoh AI. 2016. Triclosan in water, implications for human and environmental health. SpringerPlus 5:1–17. https://doi.org/10.1186/s40064-016-3287-x
  • Oliveira R, Domingues I, Grisolia CK, et al. 2009. Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res 16:679–88. https://doi.org/10.1007/s11356-009-0119-3
  • Orvos DR, Versteeg DJ, Inauen J, et al. 2002. Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–49. https://doi.org/10.1002/etc.5620210703
  • Palenske NM, Nallani GC, and Dzialowski EM. 2010. Physiological effects and bioconcentration of triclosan on amphibian larvae. Comp Biochem Physiol C: Toxicol Pharmacol 152:232–40
  • Pathan TS, Sonawane DL, and Khillare YK. 2009. Toxicity and behavioural changes in freshwater fish Rasbora daniconius exposed to paper mill effluent. Bot Res Inter 2:263–6
  • Pinckney JL, Thompson L, and Hylton S. 2017. Triclosan alterations of estuarine phytoplankton community structure. Mar Pollut Bull 119:162–8. https://doi.org/10.1016/j.marpolbul.2017.03.056
  • Pintado-Herrera MG, Gonzalez-Mazo E, and Lara-Martín PA. 2014. Determining the distribution of triclosan and methyl triclosan in estuarine settings. Chemosphere 95:478–85. https://doi.org/10.1016/j.chemosphere.2013.09.101
  • Raut SA and Angus RA. 2010. Triclosan has endocrine disrupting effects in male western mosquitofish, Gambusia affinis. Environ Toxicol Chem 29:1287–91
  • Ren ZM and Wang ZJ. 2010. Differences in the behavior characteristics between Daphnia magna and Japanese Madaka in an on-line biomonitoring system (in Chinese). J Environ Sci 22:703–8. https://doi.org/10.1016/S1001-0742(09)60166-2
  • Riva C, Cristoni S, and Binelli A. 2012. Effects of triclosan in the freshwater Musseldreissena polymorpha: A proteomic investigation. Aquat Toxicol 118:62–71. https://doi.org/10.1016/j.aquatox.2012.03.013
  • Rowett CJ, Hutchinson TH, and Comber SDW. 2016. The impact of natural and anthropogenic dissolved organic carbon (DOC), and pH on the toxicity of triclosan to the crustacean Gammarus pulex (L.). Sci Total Environ 565:222–31. https://doi.org/10.1016/j.scitotenv.2016.04.170
  • Ruszkiewicz JA, Li S, Rodriguez MB, and Aschner M. 2017. Is triclosan a neurotoxic agent? J Toxicol Environ Health Part B 20:104–17. https://doi.org/10.1080/10937404.2017.1281181
  • Sandahl JF, Baldwin DH, Jenkins JJ, et al. 2005. Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Environ Toxicol Chem 24:136–45. https://doi.org/10.1897/04-195R.1
  • Shahmohamadloo RS, Lissemore L, Prosser RS, et al. 2017. Comparative evaluation of four biosolids formulations on the effects of triclosan on plant-arbuscular mycorrhizal fungal interactions in three crop species. Sci Total Environ 583:292–9. https://doi.org/10.1016/j.scitotenv.2017.01.067
  • Sharma M, Chadha P, and Borah MK. 2015. Fish behaviour and immune response as a potential indicator of stress caused by 4-nonylphenol. Am J Biosci 3:278–83. https://doi.org/10.11648/j.ajbio.20150306.21
  • Shim J, Weatherly LM, Luc RH, et al. 2016. Triclosan is a mitochondrial uncoupler in live zebrafish. J Appl Toxicol 36:1662–7. https://doi.org/10.1002/jat.3311
  • Talib A and Randhir TO. 2016. Managing emerging contaminants: Status, impacts, and watershed-wide strategies. Exposure and Health 8:143–58. https://doi.org/10.1007/s12403-015-0192-4
  • Tatarazako N, Ishibashi H, Teshima K, et al. 2004. Effects of triclosan on various aquatic organisms. Environ Sci 11:133–40
  • Tohidi F and Cai Z. 2016. Adsorption isotherms and kinetics for the removal of triclosan and methyl triclosan from wastewater using inactivated dried sludge. Process Biochem 51:1069–77. https://doi.org/10.1016/j.procbio.2016.04.018
  • Vellinger C, Gismondi E, Felten V, et al. 2013. Single and combined effects of cadmium and arsenate in Gammarus pulex (crustacea, amphipoda). Aquat Toxicol 140–141:106–16. https://doi.org/10.1016/j.aquatox.2013.05.010
  • Yueh MF and Tukey RH. 2016. Triclosan: A widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol 56:251–72. https://doi.org/10.1146/annurev-pharmtox-010715-103417

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.