278
Views
16
CrossRef citations to date
0
Altmetric
Articles

Distribution of surface soil mercury of Wuda old mining area, Inner Mongolia, China

, , , &
Pages 1421-1439 | Received 12 Sep 2017, Accepted 20 Dec 2017, Published online: 30 Jan 2018

References

  • Bailey EA, Gray JE, and Theodorakos PM. 2002. Mercury in vegetation and soils at abandoned mercury mines in southwestern Alaska, USA. Geochem: Explor, Environ, Anal 2:275–85
  • Bartov G, Deonarine A, Johnson TM, et al. 2013. Environmental impacts of the Tennessee Valley Authority Kingston coal ash Spill. 1. Source apportionment using mercury stable isotopes. Environ Sci Technol 47(4):2092–9. doi:10.1021/es303111p
  • Bell FG, Bullock SET, Halbich TFJ, et al. 2001. Environmental impacts associated with an abandoned mine in the Witbank Coalfire, South Africa. Int J Coal Geol 45:195–216. doi:10.1016/S0166-5162(00)00033-1
  • Bernaus A, Gaona X, Ree D, et al. 2006. Determination of mercury in polluted soils surrounding a chlor-alkali plant: Direct speciation by X-ray absorption spectroscopy techniques and preliminary geochemical characterisation of the area. Anal Chim Acta 565(1):73–80. doi:10.1016/j.aca.2006.02.020
  • Carras JN, Day, SJ, Saghafi A, et al. 2009. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int J Coal Geol 78:161–8. doi:10.1016/j.coal.2008.12.001
  • Carthy DM, Edwards GC, Gustin MS, et al. 2017. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations. Chemosphere 184:694–9. doi:10.1016/j.chemosphere.2017.06.051
  • Chance R, Jickells TD, and Baker AR. 2015. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar Chem 177:45–56. doi:10.1016/j.marchem.2015.06.028
  • Chang J, Liu M, Li X, et al. 2009. Primary research on health risk assessment of heavy metals in road dust of Shanghai. China Environ Sci 29(5):548–54( in Chinese with English abstract)
  • Chen R, Sherbinin A, and Ye SG. 2014. China's soil pollution: Farms on the frontline. Science 344:691. doi:10.1126/science.344.6185.691-a
  • Chen X, Xia XH, Wu S, et al. 2010. Mercury in urban soils with various types of land use in Beijing, China. Environ Pollut 158(1):48–54. doi:10.1016/j.envpol.2009.08.028
  • CNEMC (China National Environment Monitoring Centre). 1990. Background Values of Soil Elements Concentration in China. China Environmental Science Press, Beijing
  • Dai Q, Feng X, Qiu G, et al. 2003. Mercury contaminations from gold mining using amalgamation technique in Xiaoqinling Region, Shanxi province, PR China. J Phys IV 107:345–8
  • Ding FH, He ZL, Liu SX, et al. 2017. Heavy metals in composts of China: Historical changes, regional variation, and potential impact on soil quality. Environ Sci Pollut Res 24:3194–209. doi:10.1007/s11356-016-8057-3
  • Dragović S, Ćujić M, Slavković-Beškoski L, et al. 2013. Trace element distribution in surface soil from a coal burning power production area: A case study from the largest power plant site in Serbia. Catena 104:288–96. doi:10.1016/j.catena.2012.12.004
  • Du YR, Gao B, Zhou HD, et al. 2013. Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ Sci 18:299–309. doi:10.1016/j.proenv.2013.04.039
  • Duan HJ, Cai XQ, Ruan XL, et al. 2015. Assessment of heavy metal pollution and its health risk of surface dust from parks of Kaifeng, China. Environ Sci 36(8):2972–9 ( in Chinese with English abstract)
  • Eckley CS, Pierrette B, Daniel M, et al. 2015. Soil-air mercury flux near a large industrial emission source before and after closure (Flin Flon, Manitoba, Canada). Environ Sci Technol 49:9750–7. doi:10.1021/acs.est.5b01995
  • Egler SG, Rodrigues-Filho S, Villas-Bôas RC, et al. 2006. Evaluation of mercury pollution in cultivated and wild plants from two small communities of the Tapajós gold mining reserve, pará State, Brazil. Sci Total Environ 368:424–33. doi:10.1016/j.scitotenv.2005.09.037
  • Fang FM, Wang QC, and Li JF. 2004. Urban environmental mercury in Changchun, a metropolitan city in North-eastern China: Source, cycle and fate. Sci Total Environ 330:159–70. doi:10.1016/j.scitotenv.2004.04.006
  • Feng X, Dai Q, Qiu G, et al. 2006. Gold mining related mercury contamination in Tongguan, Shanxi Province, PR China. Appl. Geochem 21(11):1955–68. doi:10.1016/j.apgeochem.2006.08.014
  • Feng XB and Qiu GL. 2008. Mercury pollution in Guizhou, Southwestern China–An overview. Sci Total Environ 400:227–37. doi:10.1016/j.scitotenv.2008.05.040
  • Finkelman RB. 1993. Trace and minor elements in coal. In: Engel MH, Macko SA ( eds), Organic Geochemistry, vol 956, pp 593–607. Plenmu, New York
  • Foscolos AE, Goodarzi F, Koukouzas CN, et al. 1989. Reconnaissance study of mineral matter and trace elements in Greek lignites. Chem Geol 76:107–30. doi:10.1016/0009-2541(89)90131-9
  • Frentiu T, Ponta M, and Sârbu C. 2015. Prediction of the fate of Hg and other contaminants in soil around a former chlor-alkali plant using Fuzzy Hierarchical cross-clustering approach. Chemosphere 138:96–103. doi:10.1016/j.chemosphere.2015.05.070
  • Gangopadhyay PK. 2006. Application of remote sensing to identify coalfires in the Raniganj coalbelt, India. Int J Appl Earth Observation Geoinformation 8:188–95. doi:10.1016/j.jag.2005.09.001
  • Gnamu A, Byrne AR, and Horvat M. 2000. Mercury in soil-plant-deer predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34:3337–45. doi:10.1021/es991419w
  • Gordeeva ON, Belogolva GA, and Pastukhov MV. 2017. Mercury speciation and mobility in soils of industrial areas in the Baikal region, Southern Siberia, Russia. Environ Earth Sci 76:558. doi:10.1007/s12665-017-6882-4
  • Gosar M, Sajn R, and Biester H. 2006. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Sci Total Environ 369:150–62. doi:10.1016/j.scitotenv.2006.05.006
  • Halbach K, Mikkelsen Ø, Berg T, et al. 2017. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188:567–74. doi:10.1016/j.chemosphere.2017.09.012
  • Han XF, Lu XW, and Qinggeletu, Wu YF. 2017. Health risks and contamination levels of heavy metals in dusts from parks and squares of an industrial city in Semi-Arid area of China. Environ Res Public Health 14:886. doi:10.3390/ijerph14080886
  • Heffern EL and Coates DA. 2004. Geologic history of natural coal-bed fires, Powder River basin, USA. Int J Coal Geol 59:25–47. doi:10.1016/j.coal.2003.07.002
  • Higueras P, Oyarzun R, Biester H, et al. 2003. A first insight into mercury distribution and speciation in soils from the Almadén district, Spain. J Geochem Explor 80:95–104. doi:10.1016/S0375-6742(03)00185-7
  • Hong XP, Liang HD, Lv S, et al. 2017. Mercury emissions from dynamic monitoring holes of underground coal fire in Wuda coalfield, Inner Mongolia, China. Int J Coal Geol 181:78–86. doi:10.1016/j.coal.2017.08.013
  • Ian G. 2000. A major fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 164:357–80. doi:10.1016/S0031-0182(00)00194-2
  • Inácio MM, Pereira V, and Pinto MS. 1998. Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85:325–39. doi:10.1016/S0016-7061(98)00027-5
  • Ivan G and Rabia AG. 2008. Potential health risk assessment for soil heavy metal contamination in the central zone of Belgrade (Serbia). J Serbia Chem Soc 73(8–9):923–34. doi:10.2298/JSC0809923G
  • Jordana N, Slobodan M, Dušana B, et al. 2017. Mercury content in agricultural soils (Vojvodina Province, Serbia). Environ Sci Pollut Res 24(12):10966–75
  • José Antonio Rodríguez Martín and Nikos Nanos. 2016. Soil as an archive of coal-fire power plant mercury deposition. J Hazard Mater 308:131–8. doi:10.1016/j.jhazmat.2016.01.026
  • Joshy G, Reginald E Masto LC Ram, et al. 2015. Human exposure risks for metals in soil near a coal-fired power-generating plant. Arch Environ Contam Toxicol 68:451–61. doi:10.1007/s00244-014-0111-x
  • Kamunda C, Mathuthu M, and Madhuku M. 2016. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Environ Res Public Health 13(7):633
  • Karbassi A, Nasrabadi T, Rezai M, et al. 2014. Pollution with metals (As, Sb, Hg, Zn) in agricultural soil located close to Zarshuran gold mine, Iran. Environ Eng Manage J 13:155–20
  • Kelepertzis E and Argyraki A. 2015. Mercury in the urban topsoil of Athens, Greece. Sustainability 7:4049–62. doi:10.3390/su7044049
  • Komov VT, Lvanova ES, Poddubnaya NY, et al. 2017. Mercury in soil, earthworms and organs of voles myodes glareous and shrew sorex araneus in the vicinity of an industrial comploex in Northwest Russia. Environ Monit Assess 189:104. doi:10.1007/s10661-017-5799-4
  • Kuenzer C and Stracher GB. 2012. Geomorphology of coal seam fires. Geomorphology 138:209–22. doi:10.1016/j.geomorph.2011.09.004
  • Kuenzer C, Zhang J, Sun Y, et al. 2012. Coal fires revisited: The Wuda coal field in the aftermath of extensive coal fire research and accelerating extinguishing activities. Int J Coal Geol 102:75–86. doi:10.1016/j.coal.2012.07.006
  • Lennart M, Mats I, and Krister K. 1989. Radon migration through soil and bedrock. Geoexploration 26(4):135–44
  • Li DH, Tang YG, Chen K, et al. 2006. Distribution of twelve toxic trace elements in coal from Southwest China. J China Univ Min Technol 35(1):15–20 ( in Chinese with English abstract)
  • Li F, Liang HD, Zhao XP, et al. 2016. Remote sensing monitoring research on coal fire in Wuda mine by aster images. Saf Coal Mines 47(11):15–18 ( in Chinese with English abstract)
  • Li H, Zhu L, Wu S, et al. 2017. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere. Int J Coal Geol 170:69–76. doi:10.1016/j.coal.2016.07.011
  • Li P, Feng X, and Shang L, et al. 2008. Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China. Appl Geochem 23:2055–64. doi:10.1016/j.apgeochem.2008.04.020
  • Li R, Zhou A, Tong F, et al. 2011. Distribution of metals in urban dusts of Hefei and health risk assessment. Environ Sci 32(9):2661–8 ( in Chinese with English abstract)
  • Li Y, Li Z, Xiong H, et al. 2015. Risk assessment of roadside heavy metal pollution to human health in Chongqing. J Southwest Univ 37(2):18–23 ( in Chinese with English abstract)
  • Li Y, Wang W, Yang L, et al. 2005. Environmental quality of soil polluted by mercury and lead in Polymetallic deposit areas of western Hunan province. Environ Sci 26(5):187–91 ( in Chinese with English abstract)
  • Liang J, Feng CT, Zeng GM, et al. 2017. Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China. Chemosphere 189:198–205. doi:10.1016/j.chemosphere.2017.09.046
  • Liang Y, Liang H, and Zhu S. 2016. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China. Fuel 182:525–30. doi:10.1016/j.fuel.2016.05.092
  • Liang YC, Liang HD, and Zhu SQ. 2014. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China. Atmos Environ 83:176–84. doi:10.1016/j.atmosenv.2013.09.001
  • Lim HS, Lee JS, and Chon HT, et al. 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J Geochem Explor 96(2–3):223–30. doi:10.1016/j.gexplo.2007.04.008
  • Lu X, Li YL, Wang L, et al. 2009. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ 43:2489–96. doi:10.1016/j.atmosenv.2009.01.048
  • Ma Z, Ren W, Xue B, et al. 2014. Human health risk assessment of heavy metal pollutants in redevelopment brownfield area. Ecol Sci 33(5):963–71
  • Maramba NPC, Reyes JP, Francisco-Rivera AT, et al. 2006. Environmental and human expose assessment monitoring of communities near an abandoned mercury mine in the Philippines: A toxic legacy. J Environ Manage 81:135–45. doi:10.1016/j.jenvman.2006.02.013
  • Mazur M, Mitchell CPJ, Eckley CS, et al. 2014. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment. Sci Total Environ 496:678–87. doi:10.1016/j.scitotenv.2014.06.058
  • Mishra R, Bahuguna P, and Singh V. 2011. Detection of coal mine fire in Jharia coalfield using Landsat-7 ETM+ data. Int J Coal Geol 86:73–8. doi:10.1016/j.coal.2010.12.010
  • Mo FJ, Qian JP, Wang YW, et al. 2016. Mercury content and pollution assessment of soil and cabbage surrounding Yangshuo Pb-Zn mining district in Guangxi. Ecol Environ Sci 25(1):156–61
  • Molina JA, Oyarzun R, Esbrí JM, et al. 2006. Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on earth. Environ Geochem Health 28:487–98. doi:10.1007/s10653-006-9058-9
  • Nelson PF, Morrison AL, Malfroy HJ, et al. 2012. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources. Atmos Environ 62:291–302. doi:10.1016/j.atmosenv.2012.07.067
  • Nho-Kim EY, Mi CM, and Peoch VH. 2004. Parameterization of size-dependent particle dry deposition velocities for global modeling. Atmos Environ 38:1933–42. doi:10.1016/j.atmosenv.2004.01.002
  • Olumuyiwa OO, Simiso D, Omotayo RA, et al. 2014. Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa. Environ Sci Pollut Res 21:4686–96. doi:10.1007/s11356-013-2432-0
  • Pacyna EG, Pacyna JM, Fudala J, et al. 2006. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci Total Environ 370:147–56. doi:10.1016/j.scitotenv.2006.06.023
  • Pacyna EG, Pacyna JM, Sundseth K, et al. 2010. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–99. doi:10.1016/j.atmosenv.2009.06.009
  • Pataranawat P, Parkpian P, Polprasert C, et al. 2007. Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. J Environ Sci Health Part A 42(8):1081–93. doi:10.1080/10934520701418573
  • Pirrone N, Cinnirella S, Feng X, et al. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atom Chem Phys 10:5951–64. doi:10.5194/acp-10-5951-2010
  • Pogrzeba M, Ciszek D, Galimska-Stypa R, et al. 2016. Ecological strategy for soil contaminated with mercury. Plant Soil 409:371–87. doi:10.1007/s11104-016-2936-8
  • Poissant L and Casimir A. 1998. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites. Atmos Environ 32:883–93. doi:10.1016/S1352-2310(97)00132-5
  • Pone JDN, Hein KAA, Stracher GB, et al. 2007. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. Int J Coal Geol 72:124–40. doi:10.1016/j.coal.2007.01.001
  • Prakash A and Gens R. 2011. Remote sensing of coal fires. In: Stracher GB, Prakash A, Sokol EV ( eds), Coal and Peat Fires: A Global Perspective: Coal-Geology and Combustion, vol 1, pp 231–53. Elsevier, Oxford
  • Qi JH, Li PL, Li XG, et al. 2005. Estimation of dry deposition fluxes of particulate species to the water surface in the Qindao area, using a model and surrogate surfaces. Atmos Environ 39:2081–8. doi:10.1016/j.atmosenv.2004.12.017
  • Rein G. 2011. Chapter 17-smoldering combustion phenomena and coal fires. In: Glenn BS, Anupma P, Ellina V, SokolA2-Glenn B, Stracher AP, Ellina VS ( eds), Coal and Peat Fires: A Global Perspective. Coal-geology and combustion, vol 1, pp 307–15. Elsevier, Amsterdam
  • Rosema A, Guan H, Genderen JLV, et al. 1999. Manual of Coal Fire Detection and Monitoring: Report of the Project: Development and Implementation of a Coal Fire Monitoring and Fighting System in China, p 245. NITG, Netherland
  • Rumayor R, Gallego JR, Rodriguez-Valdes E, et al. 2017. An assessment of the environmental fate of mercury species in highly polluted brownfields by means of a thermal desorption. J Hazard Mater 325(5):1–7. doi:10.1016/j.jhazmat.2016.11.068.
  • Schlüter K. 2000. Review: Evaporation of mercury from soils. An integration and synthesis of current knowledge. Environ Geol 39:249–71. doi:10.1007/s002540050005
  • Seigneur C, Lohman K, Vijayaraghavan K, et al. 2003. Contributions of global and regional sources to mercury deposition in New York State. Environ Pollut 123(3):365–73. doi:10.1016/S0269-7491(03)00027-7
  • Sharygin VV, Sokol EV, and Belakovskii DI. 2009. Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russ Geol Geophys 50:703–21. doi:10.1016/j.rgg.2009.01.001
  • Soriano A, Pallares S, Pardo F, et al. 2012. Deposition of heavy metals from articulate settleable matter in soils of an industrialised area. J Geochem Explor 113:36–44. doi:10.1016/j.gexplo.2011.03.006
  • Stein ED, Cohen Y, and Winer AM. 1996. Environmental distribution and transformation of mercury compounds. Crit Rev Environ Sci Technol 26:1–43. doi:10.1080/10643389609388485
  • Stracher GB. 2004. Coal fires burning around the world: A global catastrophe. Int J Coal Geol 59:1–6. doi:10.1016/j.coal.2004.01.001
  • Stracher GB and Taylor TP. 2004. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int J Coal Geol 59:7–17. doi:10.1016/j.coal.2003.03.002
  • Streets DG, Devane MK, Lu Z, et al. 2011. All-time releases of mercury to the atmosphere from human activities. Environ Sci Technol 45:10485–91. doi:10.1021/es202765m
  • Swaine DJ. 1990. Trace Elements in Coal. Butterworths, London
  • Takashi T, Yuriko K, Hitoshi K, et al. 2013. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ Res 125:12–19. doi:10.1016/j.envres.2013.03.015
  • Tang XY and Huang WH. 2004. Trace Elements in Coal of China. Business Libraries, Beijing ( in Chinese)
  • Taylor H, Appleton JD, Lister R, et al. 2005. Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Sci Total Environ 343:111–33. doi:10.1016/j.scitotenv.2004.09.042
  • Thum CR, Farago ME, and Thornton L. 2008. Bioavailability of trace metals in brownfield soils in an urban area in the UK. Environ Geochem Health 30(6):549–63. doi:10.1007/s10653-008-9185-6
  • Umbangtalad S, Parkpian P, Visvanathan C, et al. 2007. Assessment of Hg contamination and exposure to miners and schoolchildren at a small-scale gold mining and recovery operation in Thailand. J Environ Sci Health Part A 42(14):2071–9. doi:10.1080/10934520701626985
  • UNEP (United Nations Environmental Programme). 2013. Global Mercury Assessment 2013 (DTI/1636/GE). United Nations Environmental Programme, Geneva, Switzerland
  • Wachiwicz J. 2008. Analysis of underground fires in Polish hard coal mines. China Univ Min Technol 18(3):332–6 ( in Chinese with English abstract). doi:10.1016/S1006-1266(08)60070-X
  • Wang SF, Feng XB, Qiu GL, et al. 2007a. Mercury concentrtions and air/soil fluxes in Wuchuan mercury miniing district, Guizhou province, China. Atmos Environ 41:5984–93. doi:10.1016/j.atmosenv.2007.03.013
  • Wang SF, Feng XB, Qiu GL, et al. 2007b. Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China. Atmos Environ 41:5584–94. doi:10.1016/j.atmosenv.2007.03.002
  • Wang Z, Zhang X, Xiao J, et al. 2009. Mercury fluxes and pools in three subtropical forested catchments, southwest China. Environ Pollut 157:801–8. doi:10.1016/j.envpol.2008.11.018
  • Washburn S, Blum JD, Demers JD, et al. 2017. Isotopic charactrization of historic industrial contamination in the South River, Virgina. Environ Sci Technol 51:10965–73. doi:10.1021/acs.est.7b02577
  • Wuda economic and social survey. 2011. Available at www.nmg.gov.cn/zzqzf/zfgzbg/whs_1861/201203/t20170331_606027.html
  • Wuda Municipal Government. 2012. Wuda Climate. Wuda Municipal Government. Available at www.wuda.gov.cn
  • Xue S, Dickson B, and Wu J. 2008. Application of 222Rn technique to locate subsurface coal heatings in Australian coal mines. Int. J Coal Geol 74(2):139–44 ( in Chinese with English abstract). doi:10.1016/j.coal.2007.11.005
  • Yang J and Wang N. 2013. Assessment of potential ecological risk of heavy metals in soils from Jia-Pi-Gou mine area, China. J Agro-Environ sci 32(3): 595–600
  • Yang ZP, Wang L, Zhai H, et al. 2015. Study on health risk of potentially toxic metals in near-surface urban dust in Changchun city. China Environ Sci 35(4):1247–55 ( in Chinese with English abstract)
  • Yin RS, Feng XB, and Chen JB. 2014. Mercury stable isotopic compositions in coal from major coal producing field in China and their geochemical and environmental implications. Environ Sci Technol 48:5565–74. doi:10.1021/es500322n
  • Yin W, Lu Y, Li J, et al. 2009. Distribution characteristics and pollution assessment of mercury in urban soil of Guangzhou. China J Soil Sci 40(5):1185–8 ( in Chinese with English abstract)
  • Yu ZH, Huang GP, Zhang H, et al. 2017. Distribution and pollution assessment of heavy metals in paddy soil in Danzhai Au-Hg mining area, Guizhou, China. Chin J Ecol 36(8):2296–301
  • Yudovich Ya E and Ketris MP. 2005. Mercury in coal: A review Part 1. Geochem Int J Coal Geol 62:107–34. doi:10.1016/j.coal.2004.11.002
  • Zhang C, Guo S, Guan Y, et al. 2012. The diffusion area simulation of gases released by coal fire. J China Coal Soc 37(10):1698–704
  • Zhang CY, Guan YN, Guo S, et al. 2011. Land-cover change of the Wuda coal fire area. In: Tong QX, Gu XF, Zhu BQ (eds), Remote Sensing of the Environment: The 17th China Conference on Remote Sensing. vol 8203, pp 27–31. Spie-Int Soc Optical Engineering, Bellingham
  • Zhang JM, Guan HY, Cao DY, et al. 2008a. Underground Coal Fires in China: Origin, Detection, Fire-fighting, and Prevention. Coal Industry Press, Beijing ( in Chinese)
  • Zhang JY, Ren DY, Xu DW, et al. 1999. The distribution of mercury in major associated minerals from coal beds in Southwestern Guizhou. Geol Rev 45(5):539–42 ( in Chinese with English abstract)
  • Zhang L, Zhuo Y, Chen L, et al. 2008b. Mercury emissions from six coal-fired power plants in China. Fuel Process Technol 89:1033–40. doi:10.1016/j.fuproc.2008.04.002
  • Zhang MJ, Zhang XA, Qin PH, et al. 2010. Spatial distribution of mercury content in surface soil in Shenzhen city. China. Environ Sci 30(12):1645–9 ( in Chinese with English abstract)
  • Zhang XM, Kroonenberg SB, and Deboer CB. 2004. Dating of coal fires in Xinjiang, north-west China. Terr Nova 16:68–74. doi:10.1111/j.1365-3121.2004.00532.x
  • Zhang XM, Luo KL, Sun XZ, et al. 2006. Mercury in the topsoil and dust of Beijing City. Sci Total Environ 368(2–3):713–22. doi:10.1016/j.scitotenv.2006.01.037
  • Zhao Y, Zhang J, Chou CL, et al. 2008. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int J Coal Geol 73:52–62. doi:10.1016/j.coal.2007.07.007
  • Zheng LG, Liu GJ, Qi CC, et al. 2007. Study on modes of occurrence of mercury in coals from the Huaibei Coalfield. Earth Sci 32(2):279–84 ( in Chinese with English abstract)
  • Zheng M, Feng L, He J, et al. 2015. Delayed geochemical hazard: A tool for risk assessment of heavy metal polluted sites and case study. J Hazard Mater 287:197–206. doi:10.1016/j.jhazmat.2015.01.060
  • Zhou DQ, Tang JY, Cheng DQ, et al. 2002. Mining cities Research Structure, Evolution and Development in China. China Mining University Press, Xuzhou ( in Chinese with English abstract)
  • Zhu J, Wang Q, Yu H, et al. 2016. Heavy metal deposition through rainfall in Chinese natural terrestrial ecosystems: Evidences from national-scale network monitoring. Chemosphere 164:128–33. doi:10.1016/j.chemosphere.2016.08.105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.