435
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: A case study

, , , &
Pages 1222-1233 | Received 21 Feb 2018, Accepted 03 Apr 2018, Published online: 07 May 2018

References

  • Amalraj A and Pius A. 2013. Health risk from fluoride exposure of a population in selected areas of Tamil Nadu South India. Food Sci Human Well 2(2):75–86. doi:10.1016/j.fshw.2013.03.005
  • American Public Health Association (APHA). 2017. American Water Works Association (AWWA), Water Environment Federation, 23rd Edition. Washington DC, USA
  • Asare-Donkor NK, Boadu TA, and Adimado AA. 2016. Evaluation of groundwater and surface water quality and human risk assessment for trace metals in human settlements around the Bosomtwe Crater Lake in Ghana. Springer Plus 5(1):1812. doi:10.1186/s40064-016-3462-0
  • Ashbolt NJ, Amézquita A, Backhaus T, et al. 2013. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect 121(9):993
  • Ayoob S and Gupta AK. 2006. Fluoride in drinking water: A review on the status and stress effects. Crit Rev Environ Sci Technol 36(6):433–87. doi:10.1080/10643380600678112
  • Bhattacharya P, Samal AC, Banerjee S, et al. 2017. Assessment of potential health risk of fluoride consumption through rice, pulses, and vegetables in addition to consumption of fluoride-contaminated drinking water of West Bengal, India. Environ Sci Pollut Res 24(25):20300–14. doi:10.1007/s11356-017-9649-2
  • Borysewicz-Lewicka M and Opydo-Szymaczek J. 2016. Fluoride in polish drinking water and the possible risk of dental fluorosis. Pol J Environ Stud 25(1):9–15. doi:10.15244/pjoes/60352
  • Chavoshi E, Afyuni M, Hajabbasi M, et al. 2011. Health risk assessment of fluoride exposure in soil, plants, and water at Isfahan, Iran. Hum Ecol Risk Assess 17(2):414–30. doi:10.1080/10807039.2011.552397
  • Das S, de Oliveira LM, da Silva E, et al. 2017. Fluoride concentrations in traditional and herbal teas: Health risk assessment. Environ Pollut 231:779–84. doi:10.1016/j.envpol.2017.08.083
  • Dehghani MH, Farhang M, Alimohammadi M, et al. 2018. Adsorptive removal of fluoride from water by activated carbon derived from CaCl2-modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions. Chem Eng Commun 205(6):1–11. doi:10.1080/00986445.2018.1423969
  • Dehghani MH, Jahed G-R, and Zarei A. 2013. Investigation of low-pressure ultraviolet radiation on inactivation of Rhabitidae Nematode from water. Iranian J Public Health 42(3):314
  • Dehghani MH, Zarei A, Mesdaghinia A, et al. 2017. Response surface modeling, isotherm, thermodynamic and optimization study of arsenic (V) removal from aqueous solutions using modified bentonite-chitosan (MBC). Korean J Chem Eng 34(3):757–67. doi:10.1007/s11814-016-0330-0
  • Derakhshani E, Naghizadeh A, Yari AR, et al. 2017. Association of toxicochemical and microbiological quality of bottled mineral water in Birjand city, Iran. Toxin Rev 37(2):1–6. doi:10.1080/15569543.2017.1331359
  • Ding C, Ma Y, Li X, et al. 2018. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. Sci Total Environ 619:700–06. doi:10.1016/j.scitotenv.2017.11.137
  • Du S, Liu Y, Zhang L, et al. 2017. Assessment of non-carcinogenic health risks due to water contamination in a less distribution area, northeastern China. Environ Earth Sci 76(22):761. doi:10.1007/s12665-017-7097-4
  • El-Sadaawy MM and El-Said GF. 2014. Assessment of fluoride in three selected polluted environments along the Egyptian Mediterranean Sea: Effects on local populations. Hum Ecol Risk Assess 20(6):1643–58. doi:10.1080/10807039.2013.858561
  • Erdal S and Buchanan SN. 2005. A quantitative look at fluorosis, fluoride exposure, and intake in children using a health risk assessment approach. Environ Health Perspect 113(1):111. doi:10.1289/ehp.7077
  • Fordyce F, Vrana K, Zhovinsky E, et al. 2007. A health risk assessment for fluoride in Central Europe. Environ Geochem Health 29(2):83–102. doi:10.1007/s10653-006-9076-7
  • Gao HJ, Jin YK, and Wei JL. 2013. Health risk assessment of fluoride in drinking water from Anhui province in China. Environ Monit Assess 185(5):3687–95. doi:10.1007/s10661-012-2820-9
  • Ghaderpoori M, Khaniki GRJ, Dehghani M, et al. 2009. Determination of fluoride in bottled water sold in Tehran market, Iran. AEJAES 6(3):324–27
  • Ghaderpoori M, Peydar M, Zarei A, et al. 2018. Health risk assessment of fluoride in water distribution network of Mashhad, Iran. Hum Ecol Risk Assess 24(6):1–12. doi:10.1080/10807039.2018.1453297
  • Gomoro K, Zewge F, Hundhammer B, et al. 2012. Fluoride removal by adsorption on thermally treated lateritic soils. B Chem Soc Ethiopia 26(3):361–72
  • Huy TB, Tuyet-Hanh TT, Johnston R, et al. 2014. Assessing health risk due to exposure to arsenic in drinking water in Hanam Province, Vietnam. Int J Environ Res Public Health 11(8):7575–91. doi:10.3390/ijerph110807575
  • Kamani H, Mirzaei N, Ghaderpoori M, et al. 2017. Concentration and ecological risk of heavy metal in street dusts of Eslamshahr, Iran. Hum Ecol Risk Assess 24(6):1–10
  • Karthikeyan G, Pius A, and Viswanathan G. 2005. Effect of certain macro and micro minerals on fluoride toxicity. Indian J Environ Prot 25(7):601
  • Kaseva M. 2006. Contribution of trona (magadi) into excessive fluorosis—a case study in Maji ya Chai ward, northern Tanzania. Sci Total Environ 366(1):92–100. doi:10.1016/j.scitotenv.2005.08.049
  • Li P and Qian H. 2011. Human health risk assessment for chemical pollutants in drinking water source in Shizuishan City, Northwest China. Iranian J Environ Health Sci Eng 8(1):41–8
  • Li P, Tian R, Xue C, et al. 2017. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24(15):13224–34. doi:10.1007/s11356-017-8753-7
  • Liang Y, Yi X, Dang Z, et al. 2017. Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. Int J Environ Res Public Health 14(12):1557. doi:10.3390/ijerph14121557
  • Ma W, Ya F, Wang R, et al. 2008. Fluoride removal from drinking water by adsorption using bone char as a biosorbent. Int J Environ Technol Manag 9(1):59–69. doi:10.1504/IJETM.2008.017860
  • Means B. 1989. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final): Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response
  • Müller K. 2005. The Challenge of Fluoride Removal in Developing Countries: Preliminary Evaluation of Defluoridation Techniques in East Africa. Eawag, Dubendort
  • Naghizadeh A, Shahabi H, Ghasemi F, et al. 2016. Synthesis of walnut shell modified with titanium dioxide and zinc oxide nanoparticles for efficient removal of humic acid from aqueous solutions. J Water Health 14(6):989–97. doi:10.2166/wh.2016.072
  • Nakazawa K, Nagafuchi O, Okano K, et al. 2016. Non-carcinogenic risk assessment of groundwater in South Gobi, Mongolia. J Water Health 14(6):1009–18. doi:10.2166/wh.2016.035
  • Nkpaa K, Amadi B, and Wegwu M. 2018. Hazardous metals levels in groundwater from Gokana, Rivers State, Nigeria: Non-cancer and cancer health risk assessment. Hum Ecol Risk Assess 24(1):214–24. doi:10.1080/10807039.2017.1374166
  • Peng Q, Nunes LM, Greenfield BK, et al. 2016. Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment. Environ Int 88:261–68. doi:10.1016/j.envint.2015.12.035
  • Rout TK, Verma R, Dennis RV, et al. 2015. Study the removal of fluoride from aqueous medium by using nano-composites. J Encapsul Adsorp Sci 5(01):38
  • Shen F, Chen X, Gao P, et al. 2003. Electrochemical removal of fluoride ions from industrial wastewater. Chem Eng Sci 58(3–6):987–93. doi:10.1016/S0009-2509(02)00639-5
  • Storelli M. 2008. Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: Estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46(8):2782–88. doi:10.1016/j.fct.2008.05.011
  • United States Environment Protection Agency (USEPA). 2017. https://www.epa.gov/risk/human-health-risk-assessment
  • Walia T, Fanas SA, Akbar M, et al. 2017. Estimation of fluoride concentration in drinking water and common beverages in United Arab Emirates (UAE). Saudi Dent J 29(3):117–22. doi:10.1016/j.sdentj.2017.04.002
  • Wang J, Xu W, Chen L, et al. 2013. Excellent fluoride removal performance by CeO2–ZrO2 nanocages in water environment. Chem Eng J 231:198–205. doi:10.1016/j.cej.2013.07.022
  • Waugh DT, Potter W, Limeback H, et al. 2016. Risk assessment of fluoride intake from tea in the Republic of Ireland and its implications for public health and water fluoridation. Int J Environ Res Public Health 13(3):259. doi:10.3390/ijerph13030259
  • World Health Organization (WHO) 2011. Guidelines for drinking-water quality: Recommendations. 4th Edition, Geneva, Switzerland
  • Xu G, Yu Y, Wang Y, et al. 2017. Polychlorinated biphenyls in vegetable soils from Changchun, Northeast China: Concentrations, distribution, sources and human health risks. Hum Ecol Risk Assess 24(3):1–12
  • Yari AR, Nazari S, Matboo SA, et al. 2016. Fluoride concentration of drinking-water of Qom, Iran. Iranian J Health Sci 4(1):37–44. doi:10.18869/acadpub.jhs.4.1.37
  • Yousefi M, Ghoochani M, and Mahvi AH. 2018. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol Environ Safe 148:426–30. doi:10.1016/j.ecoenv.2017.10.057
  • Yu R, Wang Y, Cui Z, et al. 2017. Human health risk assessment of organophosphorus pesticides in maize (Zea mays L.) from Yushu, Northeast China. Hum Ecol Risk Assess 24(3):1–11
  • Zazouli MA, Sadeghnezhad R, and Kalankesh LR. 2017. Calculating fluoride concentrations data using ambient temperatures in drinking water distribution networks in select provinces of Iran. Data Brief 15:127–32. doi:10.1016/j.dib.2017.08.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.