529
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Toxic gas dispersion prediction for point source emission using deep learning method

, , , &
Pages 557-570 | Received 04 Jul 2018, Accepted 18 Sep 2018, Published online: 19 Jan 2019

References

  • Adankon MM, Cheriet M. 2009. Model selection for the LS-SVM. Application to handwriting recognition. Pattern Recogn 42:3264–70.
  • Baker T, Hammerstrom D. 1989. Characterization of artificial neural network algorithms. IEEE Int Symp Circuits Syst 78–81.
  • Barad ML. 1958. Project Prairie Grass, A Field Program in Diffusion. Volume1. Air Force Cambridge Centre, MA, USA.
  • Cai CZ, Han LY, Ji ZL, et al. 2003. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31:3692.
  • Chang CC, Lin CJ. 2011. LIBSVM: A Library for support vector machines. ACM T Intel Syst Tec 2:1–27.
  • Derudi M, Bovolenta D, Busini V, et al. 2014. Heavy gas dispersion in presence of large obstacles: Selection of modeling tools. Ind Eng Chem Res 53:9303–10.
  • Duijm NJ, Carissimo B, Mercer A, et al. 1997. Development and test of an evaluation protocol for heavy gas dispersion models. J Hazard Mater 56:273–85.
  • Woodward JL, Worthington DRE. 1999. Comparison of EPA guidelines tables with a commercial model. Process Saf Prog 18:25–30.
  • Fiates J, Santos RRC, Neto FF, et al. 2016. An alternative CFD tool for gas dispersion modelling of heavy gas. J Loss Prevent Proc 44:583–93
  • Hanna S, Hansen OS. 2004. FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations. Atmos Environ 38:4675–87.
  • Henriques WD, Dixon KR. 1996. Estimating spatial distribution of exposure by integrating radiotelemetry, computer simulation, and geographic information system (GIS) techniques. Hum Ecol Risk Assess 2: 527–38.
  • Hinton GE. 2002. Training products of experts by minimizing contrastive divergence. Neural Comput 14:1771–800.
  • Jacimovski S, Miladinovic S, Radovanovic R. 2016. Analysis of the emission of SO2, NOx, and suspended particles from the thermal power plants Kostolac (Serbia). Hum Ecol Risk Assess 22:1208–23.
  • Kolehmainen M, Martikainen H, Ruuskanen J. 2001. Neural networks and periodic components used in air quality forecasting. Atmos Environ 35:815–25.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436.
  • Liu X, Hou F, Qin H, et al. 2018. Multi-view Multi-scale CNNs for Lung Nodule Type Classification from CT Images. Pattern Recogn 77:262–75.
  • Ma D, Zhang Z. 2016. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. J Hazard Mater 311:237–45.
  • Meroney RN. 2012. CFD modeling of dense gas cloud dispersion over irregular terrain. J Wind Eng Ind Aerod 104:500–8.
  • Miller CW, Hively LM. 1987. A review of validation studies for the Gaussian plume atmospheric dispersion model. Nucl Saf 28:522–31.
  • Mugica-Alvarez V, Hernández-Moreno A, Valle-Hernández BL, et al. 2017. Characterization and modeling of atmospheric particles from sugarcane burning in Morelos, Mexico. Hum Ecol Risk Assess 23:1056–71.
  • Noble WS. 2006. What is a support vector machine? Nat Biotechnol 24:1565.
  • Qiu S, Chen B, Wang R, et al. 2018. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization. Atmos Environ 178:158–163.
  • Regens JL, Gunter JT, Amin M, et al. 2011. Parameterizing potential exposure to sulfur mustard (HD) using mixed model regression. Hum Ecol Risk Assess 17:1229–46.
  • Saint Yves TLA, Cabral PAM, Brum T, et al. 2012. Terrorist radiological dispersive device (RDD) scenario and cancer risk assessment. Hum Ecol Risk Assess 18:971–83.
  • Scargiali F, Rienzo ED, Ciofalo M, et al. 2005. Heavy gas dispersion modelling over a topographically complex mesoscale: A CFD based approach. Process Saf Environ 83:242–56.
  • So W, Koo J, Shin D, et al. 2010a. The estimation of hazardous gas release rate using optical sensor and neural network. Comput Aided Chem Eng 28:199–204.
  • So W, Koo J, Shin D, et al. 2010b. Optical sensor and neural networks for real-time monitoring and estimation of hazardous gas release rate. J Chem Eng Jpn 43:682–90.
  • Wang B, Chen B, Zhao J. 2015. The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models. J Hazard Mater 300:433–442.
  • Witlox HWM, Harper M, Oke A, et al. 2014. Phast validation of discharge and atmospheric dispersion for pressurised carbon dioxide releases. J Loss Prevent Proc 30:243–255.
  • Yu S, Cheng Y, Xie L, et al. 2017. Fully convolutional networks for action recognition. IET Comput Vis 11:744–749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.