255
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Local environmental risk assessment of anticancer drugs in a developing country

, , ORCID Icon, &
Pages 2142-2161 | Received 02 Jun 2019, Accepted 10 Aug 2019, Published online: 27 Aug 2019

References

  • Araújo APC, Mesak C, Montalvão MF, et al. 2019. Anti-cancer drugs in aquatic environment can cause cancer: insight about mutagenicity in tadpoles. Sci Total Environ 650:2284–93. doi:10.1016/j.scitotenv.2018.09.373
  • Azuma T. 2018. Distribution of anticancer drugs in river waters and sediments of the Yodo River basin, Japan. Appl Sci 8:2043. doi:10.3390/app8112043
  • Backhaus, T, and Faust, M. 2012. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ Sci Technol 46:2564–73 doi: 10.1021/es2034125
  • Backhaus T, Scholze M, and Grimme LH. 2000. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61. doi:10.1016/S0166-445X(99)00069-7
  • Batt AL, Furlong ET, Mash HE, et al. 2017. The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Sci Total Environ 579:1618–28. doi:10.1016/j.scitotenv.2016.02.127
  • Bertrand-Krajewski J-L. 2018. Pharmaceuticals and detergents in hospital and urban wastewater: comparative monitoring, treatment, and assessment of impacts. Environ Sci Pollut Res 25:9195–6. doi:10.1007/s11356-018-1445-0
  • Besse J-P, Kausch-Barreto C, and Garric J. 2008. Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: application to the French situation and preliminary prioritization. Hum Ecol Risk Assess 14:665–95. doi:10.1080/10807030802235078
  • Białk-Bielińska A, Mulkiewicz E, Stokowski M, et al. 2017. Acute aquatic toxicity assessment of six anti-cancer drugs and one metabolite using biotest battery—biological effects and stability under test conditions. Chemosphere 189:689–98. doi:10.1016/j.chemosphere.2017.08.174
  • Bittencourt S, Aisse MM, Serrat BM, et al. 2016. Sorção de Poluentes Orgânicos Emergentes Em Lodo de Esgoto. Eng Sanit Ambient 21:43–53. doi:10.1590/s1413-41520201600100119334
  • Booker V, Halsall C, Llewellyn N, et al. 2014. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473–474:159–70. doi:10.1016/j.scitotenv.2013.11.145
  • Brezovšek P, Eleršek T, and Filipič M. 2014. Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Res 52:168–77. doi:10.1016/j.watres.2014.01.007
  • Buerge IJ, Buser HR, Poiger T, et al. 2006. Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ Sci Technol 40:7242–50. doi:10.1021/es0609405
  • Burns EE, Carter LJ, Snape J, et al. 2018. Application of prioritization approaches to optimize environmental monitoring and testing of pharmaceuticals. J Toxicol Environ Health B: Crit Rev 21:115–41. doi:10.1080/10937404.2018.1465873
  • Česen M, Eleršek T, Novak M, et al. 2016. Ecotoxicity and genotoxicity of cyclophospamide, ifosfamide, their metabolites/transformation products and their mixtures. Environ Pollut 210:192–201. doi:10.1016/j.envpol.2015.12.017
  • Daouk S, Chèvre N, Vernaz N, et al. 2015. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents. J Environ Manag 160:324–32. doi:10.1016/j.jenvman.2015.06.037
  • Departamento de informática do Sistema Único de Saúde (DATASUS). 2018. Data Health. http://datasus.saude.gov.br/informacoes-de-saude/tabnet/assistencia-a-saude
  • DeYoung DJ, Bantle JA, Hull MA, et al. 1996. Differences in sensitivity to developmental toxicants as seen in Xenopus and Pimephales embryos. Bull Environ Contam Toxicol 56:143–50. doi:10.1007/s001289900021
  • Egeler P, and Seck C. 2008. 5-Fluorouracil: A study on the toxicity to early-life stages of Danio rerio (zebrafish). ECT Oekotoxicologie. Flörsheim/Main (DE) and Battelle UK, Ongar (UK) Report nr. ECT 08AZ1FV 
  • Ehninger G, Proksch B, and Schiller E. 1985. Detection and separation of mitoxantrone and its metabolites in plasma and urine by highperformance liquid chromatography. J Chromatogr Biomed Appl 342:119–127
  • Elersek T, Milavec S, Korošec M, et al. 2016. Toxicity of the mixture of selected antineoplastic drugs against aquatic primary producers. Environ Sci Pollut Res 23:14780–90. doi:10.1007/s11356-015-6005-2
  • EMEA. 2006. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. EMEA, London
  • Ferrando-Climent L, Rodriguez-Mozaz S, and Barceló D. 2014. Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 193:216–23. doi:10.1016/j.envpol.2014.07.002
  • Franquet-Griell H, Gómez-Canela C, Ventura F, et al. 2015. Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain). Environ Res 138:161–72. doi:10.1016/j.envres.2015.02.015
  • Ghafuri Y, Yunesian M, Nabizadeh R, et al. 2018. Platinum cytotoxic drugs in the municipal wastewater and drinking water, a validation method and health risk assessment. Hum Ecol Risk Assess 24:784–96. doi:10.1080/10807039.2017.1400372
  • Gómez-Canela C, Campos B, Barata C, et al. 2015. Degradation and toxicity of mitoxantrone and chlorambucil in water. Int J Environ Sci Technol 12:633–40. doi:10.1007/s13762-013-0454-2
  • Gómez-Canela C, Ventura F, Caixach J, et al. 2014. Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 406:3801–14. doi:10.1007/s00216-014-7805-9
  • Gu G, Yin H, Zhu Q, et al. 2018. Recognition of the prioritized types and individual of pharmaceuticals and personal care products (PPCPs) in the drinking water of Shanghai and a health risk assessment. Hum Ecol Risk Assess 25:1207–21. doi:10.1080/10807039.2018.1461009
  • Guzel EY, Cevik F, and Daglioglu N. 2018. Determination of pharmaceutical active compounds in Ceyhan River, Turkey: seasonal, spatial variations and environmental risk assessment. Hum Ecol Risk Assess Int J. 24: 1-16. doi:10.1080/10807039.2018.1479631
  • Helwig K, Hunter C, MacLachlan J, et al. 2013. Micropollutant point sources in the built environment: identification and monitoring of priority pharmaceutical substances in hospital effluents. J Environ Anal Toxicol 3:1–10. doi:10.4172/2161-0525.1000177
  • Henschel KP, Wenzel A, Diedrich M, et al. 1997. Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharmacol 25:220–5. doi:10.1006/rtph.1997.1102
  • Instituto Trata Brasil. 2018. National Sanitation Ranking. Instituto Trata Brasil, São Paulo. http://www.tratabrasil.org.br/images/estudos/itb/ranking-2018/realatorio-completo.pdf
  • Isidori M, Lavorgna M, Russo C, et al. 2016. Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environ Pollut 219:275–87. doi:10.1016/j.envpol.2016.10.039
  • Joss A, Zabczynski S, Göbel A, et al. 2006. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–96. doi:10.1016/j.watres.2006.02.014
  • Jureczko M and Przystaś W. 2019. Ecotoxicity risk of presence of two cytostatic drugs: bleomycin and vincristine and their binary mixture in aquatic environment. Ecotoxicol Environ Saf 172:210–5. doi:10.1016/j.ecoenv.2019.01.074
  • Kiffmeyer T, Götze H-J, Jursch M, et al. 1998. Trace enrichment, chromatographic separation and biodegradation of cytostatic compounds in surface water. Fresenius’ J Anal Chem 361:185–91. doi:10.1007/s002160050859
  • Kosjek T and Heath E. 2011. Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. Trends Anal Chem 30:1065–87. doi:10.1016/j.trac.2011.04.007
  • Kovács R, Bakos K, Urbányi B, et al. 2016. Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish. Environ Sci Pollut Res 23:14718–29. doi:10.1007/s11356-015-5036-z
  • Kümmerer K and Al-Ahmad A. 1997. Biodegradability of the anti-tumour agents 5-fluorouracil, cytarabine, and gemcitabine: impact of the chemical structure and synergistic toxicity with hospital effluent. Acta Hydrochim Hydrobiol 25:166–72. doi:10.1002/aheh.19970250402
  • Kümmerer K, Haiß A, Schuster A, et al. 2016. Antineoplastic compounds in the environment—substances of special concern. Environ Sci Pollut Res 23:14791–804. doi:10.1007/s11356-014-3902-8
  • Kundi, M, Parrella, A, Lavorgna, M, et al. 2016. Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures. Environ Sci Pollut Res 23:14771–9 doi: 10.1007/s11356-015-4884-x
  • Laquaz M, Dagot C, Bazin C, et al. 2018. Ecotoxicity and antibiotic resistance of a mixture of hospital and urban sewage in a wastewater treatment plant. Environ Sci Pollut Res 25:9243–53. doi:10.1007/s11356-017-9957-6
  • Lenz K, Hann S, Koellensperger G, et al. 2005. Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge. Sci Total Environ 345:141–52. doi:10.1016/j.scitotenv.2004.11.007
  • Lenz K, Koellensperger G, Hann S, et al. 2007. Fate of cancerostatic platinum compounds in biological wastewater treatment of hospital effluents. Chemosphere 69:1765–74. doi:10.1016/j.chemosphere.2007.05.062
  • Li Z, Xiang X, Li M, et al. 2015. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China. Ecotoxicol Environ Saf 119:74–80. doi:10.1016/j.ecoenv.2015.04.031
  • Link M, von der Ohe PC, Voß K, et al. 2017. Comparison of dilution factors for german wastewater treatment plant effluents in receiving streams to the fixed dilution factor from chemical risk assessment. Sci Total Environ 598:805–13. doi:10.1016/j.scitotenv.2017.04.180
  • Mahnik SN, Lenz K, Weissenbacher N, et al. 2007. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere 66:30–7. doi:10.1016/j.chemosphere.2006.05.051
  • Mahnik SN, Rizovski B, Fuerhacker M, et al. 2006. Development of an analytical method for the determination of anthracyclines in hospital effluents. Chemosphere 65:1419–25. doi:10.1016/j.chemosphere.2006.03.069
  • Márta Z, Bobály B, Fekete J, et al. 2018. Simultaneous determination of thirteen different steroid hormones using micro UHPLC-MS/MS with on-line SPE system. J Pharm Biomed Anal 150:258–67. doi:10.1016/j.jpba.2017.12.014
  • Martín J, Camacho-Munõz D, Santos JL, et al. 2014. Occurrence and ecotoxicological risk assessment of 14 cytostatic drugs in wastewater. Water Air Soil Pollut 225:1896. doi:10.1007/s11270-014-1896-y
  • Mastroianni N, Bleda MJ, de Alda ML, et al. 2016. Occurrence of drugs of abuse in surface water from four Spanish river basins: spatial and temporal variations and environmental risk assessment. J Hazard Mater 316:134–42. doi:10.1016/j.jhazmat.2016.05.025
  • Mendoza A, Aceña J, Pérez S, et al. 2015. Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard. Environ Res 140:225–41
  • Moermond, C T, Kase, R, Korkaric, M, and Ågerstrand, M. 2016. CRED: Criteria for reporting and evaluating ecotoxicity data. Environ Toxicol Chem 35:1297–309 doi: 10.1002/etc.3259
  • Ministry of Health Brazil. 2013. Portaria No. 874, De 16 De Maio De 2013. http://bvsms.saude.gov.br/bvs/saudelegis/gm/2013/prt0874_16_05_2013.html
  • Moermond C, Venhuis B, van Elk M, et al. 2018. Cytostatics in Dutch Surface Water. National Institute for Public Health and the Environment, The Netherlands. doi:10.21945/RIVM-2018-0067.
  • Negreira N, de Alda ML, and Barceló D. 2014. Study of the stability of 26 cytostatic drugs and metabolites in wastewater under different conditions. Sci Total Environ 482–483:389–98. doi:10.1016/j.scitotenv.2014.02.131
  • Nidumolu, B., Kumar, A., 2012. Effect assessment of pharmaceuticals using the aquaticplant, Lemna minor. 2nd SETAC Australasia Conference, Brisbane.
  • Olalla A, Negreira N, de Alda ML, et al. 2018. A case study to identify priority cytostatic contaminants in hospital effluents. Chemosphere 190:417–30. doi:10.1016/j.chemosphere.2017.09.129
  • Parrella A, Lavorgna M, Criscuolo E, et al. 2014. Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. Chemosphere 115:59–66. doi:10.1016/j.chemosphere.2014.01.013
  • Riva F, Castiglioni S, Fattore E, et al. 2018. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int J Hyg Environ Health 221:451–7. doi:10.1016/j.ijheh.2018.01.008
  • Rowney NC, Johnson AC, and Williams RJ. 2009. Pharmaceuticals and personal care products in the environment. Cytotoxic drugs in drinking water: a prediction and risk assessment exercise for the Thames catchment in the United Kingdom. Environ Toxicol Chem 28:2733–43
  • Russo C, Lavorgna M, Česen M, et al. 2018. Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples. Environ Pollut 233:356–63. doi:10.1016/j.envpol.2017.10.066
  • Santos MSF, Franquet-Griell H, Lacorte S, et al. 2017. Anticancer drugs in Portuguese surface waters—estimation of concentrations and identification of potentially priority drugs. Chemosphere 184:1250–60. doi:10.1016/j.chemosphere.2017.06.102
  • SCHER, SCCS, SCENIHR. 2012. Opinion on the Toxicity and Assessment of Chemical Mixtures. Toxicity and Assessment of Chemical Mixtures. http://ec.europa.eu/health/scientific_committees/consultations/public_consultations/scher_consultation_06_en.htm
  • Silva RF, de Lima Moura L, Gavião LO, et al. 2018. Evaluation of the potential contamination of water with oncological drugs in municipalities of Brazil’s south region. Rev Gest Sust Ambient 7:275–99
  • SNIS, Sistema Nacional De Informações Sobre Saneamento. 2018. http:/www.snis.gov.br/aplicacao-web-serie-historica
  • Souza FS and Féris LA. 2017. Consumption-based approach for pharmaceutical compounds in a large hospital. Environ Technol 38:2217–23. doi:10.1080/09593330.2016.1255262
  • Steger-Hartmann T, Kümmerer K, and Hartmann A. 1997. Biological degradation of cyclophosphamide and its occurrence in sewage water. Ecotoxicol Environ Saf 36:174–9. doi:10.1006/eesa.1996.1506
  • Straub JO. 2010. Combined environmental risk assessment for 5-fluorouracil and capecitabine in Europe. Integr Environ Assess Manag 6:540–66. doi:10.1897/IEAM
  • Suárez S, Carballa M, Omil F, et al. 2008. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–38. doi:10.1007/s11157-008-9130-2
  • TGD. 2003. Technical Guidance Document on Risk Assessment. Part II. ISPRA, Italy. doi:10.1002/mp.12308
  • TOXNET, Toxicology Data Network. 2018. Docetaxel Data. https://toxnet.nlm.nih.gov/cgi-bin/sis/search2
  • United States, Environmental Protection, and Agency (USEPA). 2012. About This Document. Sustainable Futures/P2 Framework P2 Framework Manual. USEPA, Washington, DC, USA. doi:10.3186/jjphytopath.49.727
  • Verlicchi P and Zambello E. 2015. Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Sci Total Environ 538:750–67. doi:10.1016/j.scitotenv.2015.08.108
  • Weigt S, Huebler N, Strecker R, et al. 2011. Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36. doi:10.1016/j.tox.2011.01.004
  • Whomsley R, Brendler-Schwaab S, Griffin E, et al. 2019. Commentary on the draft revised guideline on the environmental risk assessment of medicinal products for human use. Environ Sci Eur 31:17
  • Xie H. 2012. Occurrence, ecotoxicology, and treatment of anticancer agents as water contaminants. J Environ Anal Toxicol 2:1–11. doi:10.4172/2161-0525.s2-002
  • Załęska-Radziwiłł M, Affek K, and Doskocz N. 2017. Ecotoxicological risk assessment of chosen pharmaceuticals detected in surface waters. J Environ Sci Health A: Toxic/Hazard Subst Environ Eng 52:1233–9. doi:10.1080/10934529.2017.1356199
  • Zhang J, Chang VW, Giannis A, et al. 2013. Removal of cytostatic drugs from aquatic environment: a review. Sci Total Environ 445–446:281–98. doi:10.1016/j.scitotenv.2012.12.061
  • Zounkova R, Kovalova L, Blaha L, et al. 2010. Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 81:253–60. doi:10.1016/j.chemosphere.2010.06.029
  • Zounková R, Odraska P, Dolezalova L, et al. 2007. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem 26:2208–14. doi:10.1109/WPMC.2017.8301891

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.