522
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation, source apportionment and health risk assessment of heavy metal and polycyclic aromatic hydrocarbons in soil and vegetable of Ahvaz metropolis

, ORCID Icon & ORCID Icon
Pages 71-100 | Received 20 Sep 2019, Accepted 09 Nov 2019, Published online: 29 Nov 2019

References

  • Abba EJ, Unnikrishnan S, Kumar R, Yeole B, Chowdhury Z. 2012. Fine aerosol and PAH carcinogenicity estimation in outdoor environment of Mumbai City, India. Int J Environ Health Res. 22(2):134–149. doi:10.1080/09603123.2011.613112
  • Abbasnejad B, Keshavarzi B, Mohammadi Z, Moore F, Abbasnejad A. 2019. Characteristics, distribution, source apportionment, and potential health risk assessment of polycyclic aromatic hydrocarbons in urban street dust of Kerman metropolis, Iran. Int J Environ Health Res. 29(2019): 1–18. doi:10.1080/09603123.2019.1566523
  • Abdel-Shafy HI, Mansour MSM. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet. 25(1):107–123. doi:10.1016/j.ejpe.2015.03.011
  • Akhbarizadeh R, Moore F, Keshavarzi B, Moeinpour A. 2016. Aliphatic and polycyclic aromatic hydrocarbons risk assessment in coastal water and sediments of Khark Island, SW Iran. Mar Pollut Bull. 108(1–2):33–45. doi:10.1016/j.marpolbul.2016.05.004
  • An KJ, Liu YL, Liu HL. 2017. Relationship between total polar components and polycyclic aromatic hydrocarbons in fried edible oil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 34(9):1596–1605. doi:10.1080/19440049.2017.1338835
  • Antonious GF, Silitonga MR, Tsegaye TD, Unrine JM, Coolong T, Snyder JC. 2013. Elevated concentrations of trace elements in soil do not necessarily reflect metals available to plants. J Environ Sci Health Part B. 48(3):219–225. doi:10.1080/03601234.2013.730340
  • Arslan S. 2017. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey. J Afr Earth Sci. 131:1–13. doi:10.1016/j.jafrearsci.2017.04.004
  • Ashrafzadeh S, Lehto NJ, Oddy G, McLaren RG, Kang L, Dickinson NM, Welsch J, Robinson BH. 2018. Heavy metals in suburban gardens and the implications of land-use change following a major earthquake. Appl Geochem. 88:10–16. doi:10.1016/j.apgeochem.2017.04.009
  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH. 2010. Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess. 160(1–4):83–89. doi:10.1007/s10661-008-0659-x
  • Balkhair KS, Ashraf MA. 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci. 23(1):S32–S44. doi:10.1016/j.sjbs.2015.09.023
  • Baran A, Tarnawski M, Urbański K, Klimkowicz-Pawlas A, Spałek I. 2017. Concentration, sources and risk assessment of PAHs in bottom sediments. Environ Sci Pollut Res. 24(29):23180–23195. doi:10.1007/s11356-017-9944-y
  • Barber JL, Thomas GO, Kerstiens G, Jones KC. 2004. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environ Pollut. 128(1–2):99–138. doi:10.1016/j.envpol.2003.08.024
  • Barbieri M. 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys. 5:1–4. doi:10.4172/2381-8719.1000237
  • Bojanowska M, Czerwiński J. 2010. Polycylic aromatic hydrocarbons in rape seeds with relation to their growing site and thermal treatment. J Toxicol Environ Health Part A Curr Issues. 73(17–18):1250–1259. doi:10.1080/15287394.2010.492013
  • Bortey-Sam N, Ikenaka Y, Nakayama SMM, Akoto O, Yohannes YB, Baidoo E, Mizukawa H, Ishizuka M. 2014. Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana. Sci Total Environ. 496:471–478. doi:10.1016/j.scitotenv.2014.07.071
  • Borůvka L, Vacek O, Jehlička J. 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma. 128(3–4):289–300. doi:10.1016/j.geoderma.2005.04.010
  • Broomhead NK, Moodley R, Jonnalagadda SB. 2019. Chemical and elemental analysis of the edible fruit of five Carpobrotus species from South Africa: Assessment of nutritional value and potential metal toxicity. Int J Environ Health Res. 29(2019): 1–15. doi:10.1080/09603123.2019.1595539
  • Cachada A, Ferreira da Silva E, Duarte AC, Pereira R. 2016. Risk assessment of urban soils contamination: The particular case of polycyclic aromatic hydrocarbons. Sci Total Environ. 551–552:271–284. doi:10.1016/j.scitotenv.2016.02.012
  • Candeias C, Melo R, Ávila PF, da Silva EF, Salgueiro AR, Teixeira JP. 2014. Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis–Panasqueira mine (Portugal). Appl Geochem. 44:12–26. doi:10.1016/j.apgeochem.2013.07.009
  • CCME. 2008. (Canadian Council of Ministers of the Environment) Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). Sci Support Doc. 218.
  • Chabukdhara M, Nema AK. 2012. Metal Contamination in Market Based Vegetables in an Industrial. Bull Environ Contam Toxicol. 89(1): 129–132. doi:10.1007/s00128-012-0613-z
  • Chai C, Cheng Q, Wu J, Zeng L, Chen Q, Zhu X, Ma D, Ge W. 2017. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. Ecotoxicol Environ Saf. 142:181–188. doi:10.1016/j.ecoenv.2017.04.014
  • Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP. 2014. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ Monit Assess. 186(3):1547–1560. doi:10.1007/s10661-013-3472-0
  • Chen H, Teng Y, Lu S, Wang Y, Wang J. 2015. Contamination features and health risk of soil heavy metals in China. Sci Total Environ. 512–513:143–153. doi:10.1016/j.scitotenv.2015.01.025
  • Chen H, Teng Y, Wang J, Song L, Zuo R. 2013. Source apportionment of sediment PAHs in the Pearl River Delta region (China) using nonnegative matrix factorization analysis with effective weighted variance solution. Sci Total Environ. 444:401–408. doi:10.1016/j.scitotenv.2012.11.108
  • Chen Y, Zhang F, Zhang J, Zhou M, Li F, Liu X. 2018. Accumulation characteristics and potential risk of PAHs in vegetable system grow in home garden under straw burning condition in Jilin, Northeast China. Ecotoxicol Environ Saf. 162:647–654. doi:10.1016/j.ecoenv.2018.06.082
  • Ding Y, Huang H, Zhang Y, Zheng H, Zeng F, Chen W, Qu C, Li X, Xing X, Qi S. 2018. Polycyclic aromatic hydrocarbons in agricultural soils from Northwest Fujian, Southeast China: Spatial distribution, source apportionment, and toxicity evaluation. J Geochem Explor. 195(2018):121–129. doi:10.1016/j.gexplo.2017.12.009
  • Divrikli U, Saracoglu S, Soylak M, Elci L. 2003. Determination of trace heavy metal contents of green vegetables samples from Kayseri-Turkey by flame atomic absorption spectrometry. Fresenius Environ Bull. 12(9):1123–1125.
  • Dogra N, Sharma M, Sharma A, Keshavarzi A, Minakshi, Bhardwaj R, Thukral AK, Kumar V. 2019. Pollution assessment and spatial distribution of roadside agricultural soils: A case study from India. Int J Environ Health Res. 29(2019): 1–14. doi:10.1080/09603123.2019.1578865
  • Dong J, Yang Q-w, Sun L-n, Zeng Q, Liu S-j, Pan J, Liu X-l 2011. Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China. Environ Earth Sci. 64(5):1317–1321. doi:10.1007/s12665-011-0992-1
  • Dores-Silva PR, Cotta JAO, Landgraf MD, Rezende MOO. 2018. Soils impacted by PAHs: Would the stabilized organic matter be a green tool for the immobilization of these noxious compounds? J Environ Sci Health Part B. 53(5):313–318. doi:10.1080/03601234.2018.1431461
  • Duan Y, Shen G, Tao S, Hong J, Chen Y, Xue M, Li T, Su S, Shen H, Fu X, et al. 2015. Chemosphere characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere. 127:64–69. doi:10.1016/j.chemosphere.2014.12.075
  • Dundar MS, Saglam HB. 2004. Determination of Cd and vanadium in tea varieties and their infusions in comparison with 2 infusion processes. Trace Elements Electrolytes. 21 (04):60–63. doi:10.5414/TEP21060
  • Eliku T, Leta S. 2016. Assessment of heavy metal contamination in vegetables grown using paper mill wastewater in Wonji Gefersa. Bull Environ Contam Toxicol. 97:714–720. doi:10.1007/s00128-016-1915-3
  • Esmaeili A, Moore F, Keshavarzi B, Jaafarzadeh N, Kermani M. 2014. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena. 121:88–98. doi:10.1016/j.catena.2014.05.003
  • European Union. 2009. Heavy metals in wastes. European Commission on Environment. http://ec.europa.eu/environment/waste/mining/studies/pdf/heavymetalsreport.pdf. [WWW Document].
  • European Union. 2006. Commission regulation (EC) Mno. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. J Eur Union Lond. 364:e5–e24.
  • FAO, IIASA. 2009. Harmonized world soil database. Food Agric Organ. 43.
  • Farahat E, Linderholm HW. 2015. The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Sci Total Environ. 512–513:1–7. doi:10.1016/j.scitotenv.2015.01.032
  • Feng J, Liu M, Zhao J, Hu P, Zhang F, Sun J. 2019. Applied Geochemistry Historical trends and spatial distributions of polycyclic aromatic hydrocarbons in the upper reach of the Huai River, China: Evidence from the sedimentary record. Appl Geochem. 103:59–67. doi:10.1016/j.apgeochem.2019.02.012
  • Galal TM, Shehata HS. 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic. 48:244–251. doi:10.1016/j.ecolind.2014.08.013
  • García-Lorenzo ML, Pérez-Sirvent C, Molina-Ruiz J, Martínez-Sánchez MJ. 2014. Mobility indices for the assessment of metal contamination in soils affected by old mining activities. J Geochem Exploration 147:117–129. doi:10.1016/j.gexplo.2014.06.012
  • .Garg VK, Yadav P, Mor S, Singh B, Pulhani V. 2014. Heavy metals bioconcentration from soil to vegetables and assessment of health risk caused by their ingestion. Biol Trace Elem Res. 157(3):256–265. doi:10.1007/s12011-014-9892-z
  • Gebrekidan A, Weldegebriel Y, Hadera A, Van der Bruggen B. 2013. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol Environ Saf. 95:171–178. doi:10.1016/j.ecoenv.2013.05.035
  • Guo Y, Fu Y, Yan S, Yang Y, Guo Y, Bao Z. 2012. Heavy metal distribution between parent soil and pepper in an unpolluted area, Hainan Island, China. Environ Earth Sci. 66(4):1083–1089. doi:10.1007/s12665-011-1314-3
  • Gupta SK, Ansari FA, Nasr M, Chabukdhara M, Bux F. 2018. Multivariate analysis and health risk assessment of heavy metal contents in foodstuffs of Durban. South Afr Environ Monit Assess. 190:151. doi:10.1007/s10661-018-6546-1
  • Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14(8):975–1001. doi:10.1016/0043-1354(80)90143-8
  • IARC. 2010. World Health Organization International agency for research on cancer monographs on the evaluation of carcinogenic risks to humans. Vol. 92: Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Lyon, France: IARC.
  • Jia J, Bi C, Zhang J, Jin X, Chen Z. 2018. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ Pollut. 241:750–758. doi:10.1016/j.envpol.2018.06.002
  • Jiang D, Xin C, Li W, Chen J, Li F, Chu Z, Xiao P, Shao L. 2015. Quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons in edible vegetable oils marketed in Shandong of China. Food Chem Toxicol. 83:61–67. doi:10.1016/j.fct.2015.06.001
  • Jiao H, Wang Q, Zhao N, Jin B, Zhuang X, Bai Z. 2017. Distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in soils around a chemical plant in Shanxi, China. Int J Environ Res Public Health. 14. doi:10.3390/ijerph14101198
  • Johnson YS. 2012. Determination of polycyclic aromatic hydrocarbons in edible seafood by QuEChERS‐based extraction and gas chromatography‐tandem mass spectrometry. J Food Sci. 77(7):T131–T137. doi:10.1111/j.1750-3841.2012.02758.x
  • Joner EJ, Johansen A, Loibner AP, Cruz MA, Dela Szolar OHJ, Portal JM, Leyval C. 2001. Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol. 35(13):2773–2777. doi:10.1021/es000288s
  • Jung M. 2008. Heavy metal concentrations in soils and factors affecting metal uptake by Plants in the Vicinity of a Korean Cu-W Mine. Sensors. 8(4):2413–2423. doi:10.3390/s8042413
  • Junttila J, Carroll J, Dijkstra N. 2015. Variability of present and past PAH concentrations in sediments of the SW Barents Sea. 95(2):191–210. doi:10.17850/njg95-2-04.
  • Kabata-Pendias A, Mukherjee AB. 2007. Trace elements from soil to human. Berlin, Germany: Springer Science & Business Media.
  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M. 2017. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci. 51:52–74. doi:10.1016/j.jes.2016.08.023
  • Kamal A, Cincinelli A, Martellini T, Palchetti I, Bettazzi F, Malik RN. 2016. Health and carcinogenic risk evaluation for cohorts exposed to PAHs in petrochemical workplaces in Rawalpindi city (Pakistan). Int J Environ Health Res. 26(1):37–57. doi:10.1080/09603123.2015.1007843
  • Kang F, Mao X, Wang X, Wang J, Yang B, Gao Y. 2017. Sources and health risks of polycyclic aromatic hydrocarbons during haze days in eastern China: A 1-year case study in Nanjing City. Ecotoxicol Environ Saf. 140:76–83. doi:10.1016/j.ecoenv.2017.02.022
  • Karaca G. 2016. Spatial distribution of polycyclic aromatic hydrocarbon (PAH) concentrations in soils from Bursa, Turkey. Arch Environ Contam Toxicol. 70(2):406–417. doi:10.1007/s00244-015-0248-2
  • Keshavarzi B, Mokhtarzadeh Z, Moore F, Rastegari Mehr M, Lahijanzadeh A, Rostami S, Kaabi H. 2015. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Karoon River, Khuzestan Province, Iran. Environ Sci Pollut Res. 22(23):19077–19092. doi:10.1007/s11356-015-5080-8
  • Khan ZI, Ahmad K, Ashraf M, Shoaib N, Parveen R, Bibi Z, Mustafa I, Noorka IR, Tahir HM, Akram NA, et al. 2016. Assessment of toxicological health risk of trace metals in vegetables mostly consumed in Punjab. Pakistan Environ Earth Sci. 75:1–5. doi:10.1007/s12665-016-5392-0
  • Khillare PS, Jyethi DS, Sarkar S. 2012. Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food Chem Toxicol. 50(5):1642–1652. doi:10.1016/j.fct.2012.01.032
  • Kumar SN, Verma P, Bastia B, Jain AK. 2014. Health risk assessment of polycyclic aromatic hydrocarbons: A review. J Pathol. 1:16–30.
  • Lau E, Von Gan S, Ng HK. 2012. Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface soils from five different locations in Klang Valley, Malaysia. Bull Environ Contam Toxicol. 88(5):741–746. doi:10.1007/s00128-012-0527-9
  • Lee CS, Li X, Shi W, Cheung SC, Thornton I. 2006. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Sci Total Environ. 356:45–61. doi:10.1016/j.scitotenv.2005.03.024
  • .Li B, Wang Y, Jiang Y, Li G, Cui J, Wang Y, Zhang H, Wang S, Xu S, Wang R. 2016. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Environ Sci Pollut Res. 23(24):25114–25126. doi:10.1007/s11356-016-7342-5
  • Li Y, Wang H, Wang H, Yin F, Yang X, Hu Y. 2014. Heavy metal pollution in vegetables grown in the vicinity of a multi-metal mining area in Gejiu, China: Total concentrations, speciation analysis, and health risk. Environ Sci Pollut Res. 21(21):12569–12582. doi:10.1007/s11356-014-3188-x
  • Lone MI, Saleem S, Mahmood T, Saifullah K, Hussain G. 2003. Heavy metal contents of vegetables irrigated by sewage/tubewell water. Int J Agric Biol. 5:533–535.
  • Lü H, Cai Q-Y, Jones KC, Zeng Q-Y, Katsoyiannis A. 2014. Levels of organic pollutants in vegetables and human exposure through diet: A review. Crit Rev Environ Sci Technol. 44(1):1–33. doi:10.1080/10643389.2012.710428
  • Maliszewska-Kordybach B. 1996. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry. 11(1-2):121–127. doi:10.1016/0883-2927(95)00076-3.
  • Mastral AMNAM, Callen MS, Calle ÄAS, Carboquı I. De 2000. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol. 34(15):3051–3057. doi:10.1021/es001028d
  • Mehdinia A, Aghadadashi V, Fumani NS. 2015. Origin, distribution and toxicological potential of polycyclic aromatic hydrocarbons in surface sediments from the Bushehr coast, The Persian Gulf. Mar Pollut Bull. 90(1–2):334–338. doi:10.1016/j.marpolbul.2014.09.021
  • Micó C, Recatalá L, Peris M, Sánchez J. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere. 65(5):863–872. doi:10.1016/j.chemosphere.2006.03.016
  • Mocek K, Ciemniak A. 2016. Influence of physical factors on polycyclic aromatic hydrocarbons (PAHs) content in vegetable oils. J Environ Sci Health Part B. 51(2):96–102. doi:10.1080/03601234.2015.1092820
  • Moghadam MS, Ebrahimipour G, Abtahi B, Ghassempour A. 2014. Biodegradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Journal of Environmental Health Science and Engineering. 12:1–9. doi:10.1186/s40201-014-0114-6
  • Moore F, Akhbarizadeh R, Keshavarzi B, Khabazi S, Lahijanzadeh A, Kermani M. 2015. Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environ Monit Assess. 187(4):207. doi:10.1007/s10661-015-4433-6
  • Moore F, Kargar S, Rastmanesh F. 2013. Heavy metal concentration of soils affected by Zn-smelter activities in the Qeshm Island. Iran J Sci Islam Repub Iran. 24:339–346. http://jsciences.ut.ac.ir.
  • Najmeddin A, Keshavarzi B, Moore F, Lahijanzadeh A. 2017. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environ Geochem Health. 40(4):1–22. doi:10.1007/s10653-017-0035-2
  • Nazeer S, Zaffar M, Naseem R. 2014. Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan. Ecological indicators. 43:262–270. doi:10.1016/j.ecolind.2014.03.010
  • Nganje TN, Edet AE, Ekwere SJ. 2007. Distribution of PAHs in surface soils from petroleum handling facilities in Calabar. Environ Monit Assess. 130(1–3):27–34. doi:10.1007/s10661-006-9453-9
  • Nie J, Shi J, Duan X, Wang B, Huang N, Zhao X. 2014. Health risk assessment of dietary exposure to polycyclic aromatic hydrocarbons in Taiyuan, China. J Environ Sci. 26(2):432–439. doi:10.1016/S1001-0742(13)60424-6
  • Noli F, Tsamos P. 2016. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci Total Environ. 563–564:377–385. doi:10.1016/j.scitotenv.2016.04.098
  • Obiora SC, Chukwu A, Davies TC. 2016. Journal of African Earth Sciences Heavy metals and health risk assessment of arable soils and food crops around Pb e Zn mining localities in Enyigba, southeastern Nigeria. J Afr Earth Sci. 116:182–189. doi:10.1016/j.jafrearsci.2015.12.025
  • Paraíba LC, Queiroz SCN, Maia ADHN, Ferracini VL. 2010. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge. Science of the Total Environment. 408(16):3270–3276. doi:10.1016/j.scitotenv.2010.04.026.
  • Paris A, Ledauphin J, Poinot P, Gaillard JL. 2018. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environ Pollut. 234:96–106. doi:10.1016/j.envpol.2017.11.028
  • Qian M, Wu H, Wang J, Zhang H, Zhang Z, Zhang Y, Lin H, Ma J. 2016. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China. Sci Total Environ. 559:174–181. doi:10.1016/j.scitotenv.2016.03.123
  • Qing X, Yutong Z, Shenggao L. 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Saf. 120:377–385. doi:10.1016/j.ecoenv.2015.06.019
  • Qishlaqi A, Moore F. 2007. Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River Banks, Shiraz, Iran. Am Eurasian J Agric Environ Sci. 2(5):565–573.
  • Qishlaqi A, Moore F, Forghani G. 2008. Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environ Monit Assess. 141(1-3):257–273. doi:10.1007/s10661-007-9893-x
  • Rahman MA, Rahman MM, Reichman SM, Lim RP, Naidu R. 2014. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol Environ Saf. 100:53–60. doi:10.1016/j.ecoenv.2013.11.024
  • Rastegari Mehr M, Keshavarzi B, Moore F, Sacchi E, Lahijanzadeh AR, Eydivand S, Jaafarzadeh N, Naserian S, Setti M, Rostami S. 2016. Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Hum Ecol Risk Assess. 22(8):1726–1748. doi:10.1080/10807039.2016.1219221
  • Rastegari Mehr M, Keshavarzi B, Moore F, Sharifi R, Lahijanzadeh A, Kermani M. 2017. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J Afr Earth Sci. 132:16–26. doi:10.1016/j.jafrearsci.2017.04.026
  • Reis AP, Patinha C, Ferreira da Silva E, Sousa A, Figueira R, Sérgio C, Novais V. 2010. Assessment of human exposure to environmental heavy metals in soils and bryophytes of the central region of Portugal. Int J Environ Health Res. 20(2):87–113. doi:10.1080/09603120903394649
  • Ribeiro E, Batjes NH, van Oostrum AJM. 2018. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data. Earth Syst Sci Data. 2:1–100. doi:10.5194/essd-9-1-2017
  • Robertson S. 2011. Direct estimation of organic matter by loss on ignition: Methods. SFU Soil Sci. Lab. Burn. 11.
  • RodríguezMartín JA, Ramos-Miras JJ, Boluda R, Gil C. 2013. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma. 200–201:180–188. doi:10.1016/j.geoderma.2013.02.014
  • Ryan J, Estefan G, Rashid A. 2001. Soil and plant analysis lab manual. 2nd ed. Aleppo, Syria: International Center for Agricultural Research in the Dry Land Areas (ICARDA).
  • Schiavon M, Pittarello M, Pilon-Smits EAH, Wirtz M, Hell R, Malagoli M. 2012. Selenate and molybdate alter sulfate transport and assimilation in Brassica juncea L. Czern.: Implications for phytoremediation. Environ Exp Bot. 75:41–51. doi:10.1016/j.envexpbot.2011.08.016
  • Shaheen N, Irfan NM, Khan IN, Islam S, Islam MS, Ahmed MK. 2016. Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere. 152:431–438. doi:10.1016/j.chemosphere.2016.02.060
  • Sharma S, Nagpal AK, Kaur I. 2018. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem. 255:15–22. doi:10.1016/j.foodchem.2018.02.037
  • Shen L, Xia B, Dai X. 2013. Residues of persistent organic pollutants in frequently-consumed vegetables and assessment of human health risk based on consumption of vegetables in Huizhou, South China. Chemosphere. 93(10):2254–2263. doi:10.1016/j.chemosphere.2013.07.079
  • Stogiannidis E, Laane R. 2015. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology. Cham: Springer International Publishing. p. 49–133. doi:10.1007/978-3-319-10638-0_2
  • Stout SA, Magar VX, Uhler RM, McCarthy KE-MS. 2002. Chemical fingerprinting of hydrocarbons. In: Murphy BL, Morrison RD, editors. Introduction to environmental forensics. 1st ed. New York, NY: Academic Press. p. 137–260.
  • Sun C, Liu J, Wang Y, Sun L, Yu H. 2013. Chemosphere multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere. 92(5):517–523. doi:10.1016/j.chemosphere.2013.02.063
  • Sutherland RA, Tolosa CA, Tack FMG, Verloo MG. 2000. Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Arch Environ Contam Toxicol. 38(4):428–438. doi:10.1007/s002449910057
  • Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, et al. 2004. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ. 320(1):11–24., doi:10.1016/S0048-9697(03)00453-4
  • Tian M, Yang FM, Chen SJ, Wang HB, Chen Y, Zhang LY, Zhang LM, Xiang L, Qiao BQ. 2017. Atmospheric deposition of polycyclic aromatic compounds and associated sources in an urban and a rural area of Chongqing, China. Chemosphere. 187:78–87. doi:10.1016/j.chemosphere.2017.08.077
  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters. 33(1–4):566–575. doi:10.1007/BF02414780
  • Tong R, Yang X, Su H, Pan Y, Zhang Q, Wang J, Long M. 2018. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Sci Total Environ. 616–617:1365–1373. doi:10.1016/j.scitotenv.2017.10.179
  • Wang W, Massey Simonich SL, Xue M, Zhao J, Zhang N, Wang R, Cao J, Tao S. 2010. Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environmental Pollution. 158(5):1245–1251. doi:10.1016/j.envpol.2010.01.021.
  • Wang C, Wu S, Zhou S, Shi Y, Song J. 2017. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: A review. Pedosphere. 27(1):17–26. doi:10.1016/S1002-0160(17)60293-5
  • Wang L, Li C, Jiao B, Li Q, Su H, Wang J, Jin F. 2018. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments. Sci Total Environ. 616–617:288–295. doi:10.1016/j.scitotenv.2017.10.336
  • Wang M, Liu R, Lu X, Zhu Z, Wang H, Jiang L, Liu J, Wu Z. 2018. Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China. Bull Environ Contam Toxicol. 100(5):634–640. doi:10.1007/s00128-018-2315-7
  • Wang X, Sato T, Xing B, Tao S. 2005. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ. 350(1–3):28–37. doi:10.1016/j.scitotenv.2004.09.044
  • Wang Y-C, Qiao M, Liu Y-X, Arp HPH, Zhu Y-G. 2011. Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. J Environ Monit. 13(2):433–439. doi:10.1039/C0EM00098A
  • Wang Y, Qiao M, Liu Y, Zhu Y. 2012. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J Environ Sci. 24(4):690–698. doi:10.1016/S1001-0742(11)60833-4
  • Waqas M, Khan S, Chao C, Shamshad I, Qamar Z, Khan K. 2014. Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Sci Total Environ. 497–498:448–458. doi:10.1016/j.scitotenv.2014.07.128
  • Wu H, Yang F, Li H, Li Q, Zhang F, Ba Y, Cui L, Sun L, Lv T, Wang N. 2019. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. Int J Environ Health Res. 1–13. doi:10.1080/09603123.2019.1584666
  • Wu M, Xia Z, Zhang Q, Yin J, Zhou Y, Yang H. 2016. Distribution and health risk assessment on dietary exposure of polycyclic aromatic hydrocarbons in vegetables in Nanjing, China. J Chem. 2016:1–8. doi:10.1155/2016/1581253
  • Wu Q, Leung JYS, Geng X, Chen S, Huang X, Li H, Huang Z, Zhu L, Chen J, Lu Y. 2015. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci Total Environ. 507:217–225. doi:10.1016/j.scitotenv.2014.10.121
  • Xia Z, Duan X, Qiu W, Liu D, Wang B, Tao S, Jiang Q, Lu B, Song Y, Hu X. 2010. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci Total Environ. 408(22):5331–5337. doi:10.1016/j.scitotenv.2010.08.008
  • Xiong G, Zhang Y, Duan Y, Cai C, Wang X, Li J, Tao S, Liu W. 2017. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core. Environ Sci Pollut Res. 24(23):18953–18965. doi:10.1007/s11356-017-9548-6
  • Xu D, Zhou P, Zhan J, Gao Y, Dou C, Sun Q. 2013. Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotoxicol Environ Saf. 90:103–111. doi:10.1016/j.ecoenv.2012.12.018
  • Xu P, Tao B, Ye Z, Zhao H, Ren Y, Zhang T, Huang Y, Chen J. 2016. Polycyclic aromatic hydrocarbon concentrations, compositions, sources, and associated carcinogenic risks to humans in farmland soils and riverine sediments from Guiyu, China. J Environ Sci (China). 48:102–111. doi:10.1016/j.jes.2015.11.035
  • Yang B, Xue N, Zhou L, Li F, Cong X, Han B, Li H, Yan Y, Liu B. 2012. Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China. Ecotoxicol Environ Saf. 84:304–310. doi:10.1016/j.ecoenv.2012.07.027
  • Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H, Mousavi Khaneghah A. 2018. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food Chem Toxicol. 118:480–489. doi:10.1016/j.fct.2018.05.063
  • Yu SH, Ke L, Wong YS, Tam NFY. 2005. Degradation of polycyclic aromatic hydrocarbons by a bacterial consortium enriched from mangrove sediments. Environ Int. 31(2):149–154. doi:10.1016/j.envint.2004.09.008
  • Zhang J, Fan S. K. 2016. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction. J Hazard Mater. 320:114–122. doi:10.1016/j.jhazmat.2016.08.024
  • Zhang X, Wei S, Sun Q, Wadood SA, Guo B. 2018. Ecotoxicology and environmental safety source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statisti. Ecotoxicol Environ Saf. 159:354–362. doi:10.1016/j.ecoenv.2018.04.072
  • Zhao Z, Zhang L, Cai Y, Chen Y. 2014. Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol Environ Saf. 104:323–331. doi:10.1016/j.ecoenv.2014.01.037
  • Zheng B, Wang L, Lei K, Nan B. 2016. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere. 149:91–100. doi:10.1016/j.chemosphere.2016.01.039
  • Zheng H, Xing X, Hu T, Zhang Y, Zhang J, Zhu G, Li Y, Qi S. 2018. Biomass burning contributed most to the human cancer risk exposed to the soil-bound PAHs from Chengdu Economic Region, western China. Ecotoxicol Environ Saf. 159:63–70. doi:10.1016/j.ecoenv.2018.04.065
  • Zohair A, Salim A-B, Soyibo AA, Beck AJ. 2006. Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere. 63(4):541–553. doi:10.1016/j.chemosphere.2005.09.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.