278
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of wheat straw derived biochar on immobilization of Cd and Pb in single- and binary-metal contaminated soil

, , ORCID Icon &
Pages 2420-2433 | Received 20 Mar 2020, Accepted 16 May 2020, Published online: 05 Jun 2020

References

  • Ali A, Guo D, Jeyasundar PG, Jeyasundar SA, Li Y, Xiao R, Du J, Li R, Zhang ZQ. 2019. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicol Environ Saf. 184:109635. doi:10.1016/j.ecoenv.2019.109635
  • Bashir S, Zhu J, Fu QL, Hu HQ. 2018. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere. 194:579–587. doi:10.1016/j.chemosphere.2017.11.162
  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wong S, Chia C, et al. 2014. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater. 272:121–128. doi:10.1016/j.jhazmat.2014.03.017
  • Cao YY, Xiao WH, Shen GH, Ji GY, Zhang Y, Gao CF, Han LJ. 2019. Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: Competitive effects of ion exchange and precipitation. Bioresour Technol. 273:70–76. doi:10.1016/j.biortech.2018.10.065
  • Cui LQ, Noerpel MR, Scheckel KG, Ippolito JA. 2019. Wheat straw biochar reduces environmental cadmium bioavailability. Environ Int. 126:69–75. doi:10.1016/j.envint.2019.02.022
  • Cui MC, Lee Y, Choi J, Kim J, Han ZC, Son Y, Khim J. 2018. Evaluation of stabilizing materials for immobilization of toxic heavy metals in contaminated agricultural soils in China. J Cleaner Prod. 193:748–758. doi:10.1016/j.jclepro.2018.05.105
  • Gao LY, Deng JH, Huang GF, Li K, Cai KZ, Liu Y, Huang F. 2019. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresour Technol. 272:114–122. doi:10.1016/j.biortech.2018.09.138
  • Hamid Y, Tang L, Hussain B, Usman M, Gurajala HK, Rashid MS, He Z, Yang X. 2020. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ Pollut. 257:113609. doi:10.1016/j.envpol.2019.113609
  • Hamid Y, Tang L, Yaseen M, Hussain B, Zehra A, Aziz MZ, He ZL, Yang XE. 2019. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere. 214:259–268. doi:10.1016/j.chemosphere.2018.09.113
  • He LZ, Zhong H, Liu GX, Dai ZM, Brookes PC, Xu JM. 2019b. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ Pollut. 252(Pt A):846–855. doi:10.1016/j.envpol.2019.05.151
  • He S, Wu J. 2019. Hydrogeochemical characteristics, groundwater quality and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, northwest China. Expo Health. 11(2):125–137. doi:10.1007/s12403-018-0289-7
  • He X, Li P. 2020. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks. Expo Health. doi:10.1007/s12403-020-00344-x.
  • He X, Wu J, He S. 2019a. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Hum Ecol Risk Assess. 25(1–2):32–51. doi:10.1080/10807039.2018.1531693
  • Houben D, Evrard L, Sonnet P. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy. 57:196– 204. doi:10.1016/j.biombioe.2013.07.019
  • Jackson ML. 1973. Soil chemical analysis, seconded. Madison, WI: University of Wisconsin.
  • Jiang L, Yi X, Xu B, Wang W, Lai KR. 2019. Soil treatment and crop rotation for in situ remediation of heavy metal-contaminated agricultural soil in gold mining areas. Human Ecol Risk Assess. 25(1–2):374–392. doi:10.1080/10807039.2019.1568856
  • Khan KY, Ali B, Cui XQ, Feng Y, Yang XE, Stoffella PJ. 2017. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of Pak Choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicol Environ Saf. 141:129–138. doi:10.1016/j.ecoenv.2017.03.020
  • Lahori AH, Zhang Z, Guo Z, Li R, Mahar A, Awasthi MK, Wang P, Shen F, Kumbhar F, Sial TA, et al. 2017. Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotoxicol Environ Safety. 145:528–538. doi:10.1016/j.ecoenv.2017.07.071
  • Leng LJ, Huang HJ, Li H, Li J, Zhou WG. 2019. Biochar stability assessment methods: A review. Sci Total Environ. 647:210–222. doi:10.1016/j.scitotenv.2018.07.402
  • Li H, Xu H, Zhou S, Yu Y, Li HL, Zhou C, Chen YH, Li YY, Wang MK, Wang G. 2018. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime. Ecotoxicol Environ Saf. 165:589–596. doi:10.1016/j.ecoenv.2018.09.039
  • Li HY, Ye XX, Geng ZG, Zhou HJ, Guo XS, Zhang YX, Zhao HJ, Wang GZ. 2016b. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater. 304:40–48. doi:10.1016/j.jhazmat.2015.10.048
  • Li P, Qian H, Howard KWF, Wu J, Lyu X. 2014. Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, Northwest China. Environ Monit Assess. 186(3):1385–1398. doi:10.1007/s10661-013-3461-3
  • Li P, Qian H, Howard KWF, Wu J. 2015. Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environ Earth Sci. 73(7):3403–3415. doi:10.1007/s12665-014-3628-4
  • Li P, Wu J, Qian H, Zhou W. 2016a. Distribution, enrichment and sources of trace metals in the topsoil in the vicinity of a steel wire plant along the Silk Road economic belt, northwest China. Environ Earth Sci. 75(10):909. doi:10.1007/s12665-016-5719-x
  • Liu L, Li JW, Yue FX, Yan XW, Wang FY, Bloszies S, Wang YF. 2018. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere. 194:495–503. doi:10.1016/j.chemosphere.2017.12.025
  • Lu KP, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan GD, Chen X, Zhang XK, et al. 2017. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manage. 186:285–292. doi:10.1016/j.jenvman.2016.05.068
  • Lu KP, Yang X, Shen JJ, Robinson B, Huang HG, Liu D, Bolan N, Pei JC, Wang HL. 2014. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agri Ecosyst Environ. 191:124–132. doi:10.1016/j.agee.2014.04.010
  • Ming H, Naidu R, Sarkar B, Lamb DT, Liu Y, Megharaj M, Sparks D. 2016. Competitive sorption of cadmium and zinc in contrasting soils. Geoderma. 268:60–68. doi:10.1016/j.geoderma.2016.01.021
  • Naidu R, Sumner ME, Harter RD. 1998. Sorption of heavy metals in strongly weathered soils: an overview. Environ Geochem Health. 20(1):5–9. [Mismatch] doi:10.1023/A:1006519009465
  • Nazari S, Rahimi G, Nezhad AKJ. 2019. Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. J Environ Chem Eng. 7(3):103064. doi:10.1016/j.jece.2019.103064
  • Ni BJ, Huang QS, Wang C, Ni TY, Sun J, Wei W. 2019. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere. 219:351–357. doi:10.1016/j.chemosphere.2018.12.053
  • O’Connor D, Peng TY, Zhang JL, Tsang DCW, Alessi DS, Shen ZT, Bolan NS, Hou DY. 2018. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci Total Environ. 619–620:815–826. doi:10.1016/j.scitotenv.2017.11.132
  • Puga AP, Abreu CA, Melo LCA, Beesley L. 2015. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manage. 159:86–93. doi:10.1016/j.jenvman.2015.05.036
  • Qian TT, Wu P, Qin QY, Huang YN, Wang YJ, Zhou DM. 2019. Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). J Hazard Mater. 362:311–317. doi:10.1016/j.jhazmat.2018.09.034
  • Sellaoui L, Soetaredjo FE, Ismadji S, Bonilla-Petriciolet A, Belver C, Bedia J, Ben Lamine A, Erto A. 2018. Insights on the statistical physics modeling of the adsorption of Cd2+ and Pb2+ ions on bentonite-chitosan composite in single and binary systems. Chem Eng J. 354:569–576. doi:10.1016/j.cej.2018.08.073
  • Shaaban M, Zwieten LV, Bashir S, Younas A, Núñez-Delgado A, Chhajro MA, Kubar KA, Ali U, Rana MS, Mehmood MA, et al. 2018. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manage. 228:429–440. doi:10.1016/j.jenvman.2018.09.006
  • Shahbaz AK, Lewińska K, Iqbal J, Ali Q, Mahmood Ur R, Iqbal M, Abbas F, Tauqeer HM, Ramzani PMA. 2018. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J Environ Manage. 218:256–270. doi:10.1016/j.jenvman.2018.04.046
  • Shen ZT, Hou DY, Zhao B, Xu WD, Ok YS, Bolan NS, Alessi DS. 2018. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Sci Total Environ. 619-620:185–193. doi:10.1016/j.scitotenv.2017.11.038
  • Sun JK, Lian F, Liu ZQ, Zhu LY, Song ZG. 2014. Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicol Environ Saf. 106:226–231. doi:10.1016/j.ecoenv.2014.04.042
  • Wang JL, Wang SZ. 2019. Preparation, modification and environmental application of biochar: A review. J Cleaner Prod. 227:1002–1022. doi:10.1016/j.jclepro.2019.04.282
  • Wang Y, Liu RH. 2017. Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. Fuel Process Technol. 160:55–63. doi:10.1016/j.fuproc.2017.02.019
  • Xiao R, Wang P, Mi SS, Ali A, Liu XY, Li Y, Guan WD, Li RH, Zhang ZQ. 2019. Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicol Environ Saf. 181:155–163. doi:10.1016/j.ecoenv.2019.06.005
  • Xu C, Xiang Q, Zhu HH, Wang S, Zhu QH, Huang DY, Zhang YZ. 2018. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil. Ecotoxicol Environ Saf. 164:554–561.
  • Xu P, Sun CX, Ye XZ, Xiao WD, Zhang Q, Wang Q. 2016. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol Environ Saf. 132:94–100. doi:10.1016/j.ecoenv.2016.05.031
  • Yang X, Liu JJ, McGrouther K, Huang HG, Lu KP, Guo X, He LZ, Lin XM, Che L, Ye ZQ, et al. 2016. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res. 23(2):974–984. doi:10.1007/s11356-015-4233-0
  • Yasmin KK, Ali B, Cui XQ, Feng Y, Pan FS, Tang L, Yang XE. 2017. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. J Integr Agr. 16(3):725–734. doi:10.1016/S2095-3119(16)61488-0
  • Yuan JH, Xu RK, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol. 102(3):3488–3497. doi:10.1016/j.biortech.2010.11.018
  • Zhang GX, Guo XF, Zhao ZH, He QS, Wang SF, Zhu Y, Yan YL, Liu XT, Sun K, Zhao Y, et al. 2016. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ Pollut. 218:513–522. doi:10.1016/j.envpol.2016.07.031
  • Zhang T, Zhu XX, Shi LN, Li JF, Li SJ, Lü JH, Li YM. 2017. Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals. Bioresour Technol. 235:185–192. doi:10.1016/j.biortech.2017.03.109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.