554
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Health risk assessment and source identification of groundwater arsenic contamination using agglomerative hierarchical cluster analysis in selected sites from upper Eastern parts of Punjab province, Pakistan

, , , , &
Pages 999-1018 | Received 16 May 2020, Accepted 08 Jul 2020, Published online: 26 Jul 2020

References

  • Ali W, Aslam MW, Feng C, Junaid M, Ali K, Li S, Chen Z, Yu Z, Rasool A, Zhang H. 2019. Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan. Environ Geochem Health. 41(5):2223–2238. doi:10.1007/s10653-019-00278-7
  • Arain M, Kazi T, Baig J, Jamali M, Afridi H, Shah A, Jalbani N, Sarfraz R. 2009. Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food Chem Toxicol. 47(1):242–248. doi:10.1016/j.fct.2008.11.009
  • Aziz S, Ain W, Majeed R, Khan MA, Qayum I, Ahmed I, Hosain K. 2012. Growth centile charts (anthropometric measurement) of Pakistani pediatric population. JPMA. 62:367.
  • Basharat M, Tariq A-u-R. 2013. Spatial climate variability and its impact on irrigated hydrology in a canal command. Arab J Sci Eng. 38(3):507–522. doi:10.1007/s13369-012-0336-9
  • Benner SG, Fendorf S. 2010. Arsenic in south Asia groundwater. Geography Compass. 4(10):1532–1552. doi:10.1111/j.1749-8198.2010.00387.x
  • Biswas A, Nath B, Bhattacharya P, Halder D, Kundu AK, Mandal U, Mukherjee A, Chatterjee D, Mörth C-M, Jacks G. 2012. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Sci Total Environ. 431:402–412. doi:10.1016/j.scitotenv.2012.05.031
  • Bondu R, Cloutier V, Rosa E, Benzaazoua M. 2017. Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada. Sci Total Environ. 574:509–519. doi:10.1016/j.scitotenv.2016.08.210
  • Brahman KD, Kazi TG, Afridi HI, Arain SS, Kazi AG, Talpur FN, Baig JA, Panhwar AH, Arain MS, Ali J. 2016. Toxic risk assessment of arsenic in males through drinking water in Tharparkar Region of Sindh, Pakistan. Biol Trace Element Res. 172:61–71. doi:10.1007/s12011-015-0567-1
  • Buchhamer EE, Blanes PS, Osicka RM, Giménez MC. 2012. Environmental risk assessment of arsenic and fluoride in the Chaco Province, Argentina: Research advances. J Toxicol Environ Health Part A. 75(22-23):1437–1450. doi:10.1080/15287394.2012.721178
  • Coomar P, Mukherjee A, Bhattacharya P, Bundschuh J, Verma S, Fryar AE, Ramos Ramos OE, Muñoz MO, Gupta S, Mahanta C, et al. 2019. Contrasting controls on hydrogeochemistry of arsenic-enriched groundwater in the homologous tectonic settings of Andean and Himalayan basin aquifers, Latin America and South Asia. Sci Total Environ. 689:1370–1387. doi:10.1016/j.scitotenv.2019.05.444
  • Elumalai V, Brindha K, Sithole B, Lakshmanan E. 2017. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environ Sci Pollut Res Int. 24(12):11601–11617. doi:10.1007/s11356-017-8681-6
  • Farooqi A, Masuda H, Firdous N. 2007. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut. 145(3):839–849. doi:10.1016/j.envpol.2006.05.007
  • Farooqi A, Masuda H, Kusakabe M, Naseem M, Firdous N. 2007. Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem J. 41(4):213–234. doi:10.2343/geochemj.41.213
  • Fendorf S, Michael HA, van Geen A. 2010. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science. 328(5982):1123–1127. doi:10.1126/science.1172974
  • Giménez-Forcada E. 2014. Space/time development of seawater intrusion: A study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies. J Hydrol. 517:617–627. doi:10.1016/j.jhydrol.2014.05.056
  • Greenman DW, Bennett GD, Swarzenski WV. 1967. Ground-water hydrology of the Punjab, West Pakistan, with emphasis on problems caused by canal irrigation. US Government Printing Office.
  • Guo Q, Guo H, Yang Y, Han S, Zhang F. 2014. Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, PR China. J Hydrol. 518:464–476. doi:10.1016/j.jhydrol.2014.06.026
  • Johannesson KH, Yang N, Trahan AS, Telfeyan K, Mohajerin TJ, Adebayo SB, Akintomide OA, Chevis DA, Datta S, White CD. 2019. Biogeochemical and reactive transport modeling of arsenic in groundwaters from the Mississippi River delta plain: An analog for the As-affected aquifers of South and Southeast Asia. Geochim Cosmochim Acta. 264:245–272. doi:10.1016/j.gca.2019.07.032
  • Kumar A, Singh CK. 2020. Arsenic enrichment in groundwater and associated health risk in Bari doab region of Indus basin, Punjab, India. Environ Pollut. 256:113324doi:10.1016/j.envpol.2019.113324
  • Li Z, Yang Q, Yang Y, Xie C, Ma H. 2020. Hydrogeochemical controls on arsenic contamination potential and health threat in an intensive agricultural area, northern China. Environ Pollut. 256:113455. doi:10.1016/j.envpol.2019.113455
  • Malik A, Parvaiz A, Mushtaq N, Hussain I, Javed T, Rehman HU, Farooqi A. 2020. Characterization and role of derived dissolved organic matter on arsenic mobilization in alluvial aquifers of Punjab, Pakistan. Chemosphere. 251:126374. doi:10.1016/j.chemosphere.2020.126374
  • McArthur JM. 2019. Arsenic in groundwater, groundwater development and management. Springer international publsihing, p. 279–308.
  • Muhammad S, Shah MT, Khan S. 2010. Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food Chem Toxicol. 48(10):2855–2864. doi:10.1016/j.fct.2010.07.018
  • Mukherjee A, Fryar AE. 2008. Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem. 23(4):863–894. doi:10.1016/j.apgeochem.2007.07.011
  • Mushtaq N, Younas A, Mashiatullah A, Javed T, Ahmad A, Farooqi A. 2018. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere. 200:576–586. doi:10.1016/j.chemosphere.2018.02.154
  • Nafees AA, Kazi A, Fatmi Z, Irfan M, Ali A, Kayama F. 2011. Lung function decrement with arsenic exposure to drinking groundwater along River Indus: a comparative cross-sectional study. Environ Geochem Health. 33(2):203–216. doi:10.1007/s10653-010-9333-7
  • Naseem S, McArthur JM. 2018. Arsenic and other water‐quality issues affecting groundwater, I ndus alluvial plain, P akistan. Hydrol Processes. 32(9):1235–1253. doi:10.1002/hyp.11489
  • Nickson R, McArthur J, Shrestha B, Kyaw-Myint T, Lowry D. 2005. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl Geochem. 20(1):55–68. doi:10.1016/j.apgeochem.2004.06.004
  • Nicolli HB, Bundschuh J, Blanco MdC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE. 2012. Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ. 429:36–56. doi:10.1016/j.scitotenv.2012.04.048
  • Nicolli HB, Bundschuh J, García JW, Falcón CM, Jean J-S. 2010. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina)). Water Res. 44(19):5589–5604. doi:10.1016/j.watres.2010.09.029
  • Pokkamthanam AS, Riederer AM, Anchala R. 2011. Risk assessment of ingestion of arsenic-contaminated water among adults in Bandlaguda, India. J Health Pollut. 1(1):8–15. doi:10.5696/jhp.v1i1.21
  • Postma D, Trang PTK, Sø HU, Van Hoan H, Lan VM, Thai NT, Larsen F, Viet PH, Jakobsen R. 2016. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochim Cosmochim Acta. 195:277–292. doi:10.1016/j.gca.2016.09.014
  • Puri S, Villholth KG. 2018. Governance and management of transboundary aquifers. KG Villholth, E. López-Gunn, KL Conti, A. Garrido, & Van der Gun, J.(Eds.), Advances in groundwater governance, p. 367–388. CRC Press, London.
  • Rabbani U, Mahar G, Siddique A, Fatmi Z. 2017. Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan. Environ Geochem Health. 39(1):179–190. doi:10.1007/s10653-016-9818-0
  • Rasool A, Farooqi A, Xiao T, Masood S, Kamran MA, Bibi S. 2016. Elevated levels of arsenic and trace metals in drinking water of Tehsil Mailsi, Punjab, Pakistan. J Geochem Explor. 169:89–99. doi:10.1016/j.gexplo.2016.07.013
  • Rasool A, Xiao T, Farooqi A, Shafeeque M, Liu Y, Kamran MA, Katsoyiannis IA, Eqani SAMAS. 2017. Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environ Geochem Health. 39(4):847–863. doi:10.1007/s10653-016-9855-8
  • Sanjrani M, Mek T, Sanjrani N, Leghari S, Moryani H, Shabnam A. 2017. Current situation of aqueous arsenic contamination in Pakistan, focused on Sindh and Punjab Province, Pakistan: A review. J Pollut Eff Cont. 05(04):2. doi:10.4172/2375-4397.1000207
  • Shahab A, Qi S, Zaheer M. 2019. Arsenic contamination, subsequent water toxicity, and associated public health risks in the lower Indus plain, Sindh province, Pakistan. Environ Sci Pollut Res Int. 26(30):30642–30662. doi:10.1007/s11356-018-2320-8
  • Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WNA, Juahir H, Fakharian K. 2014. Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol-Babol Plain, Iran. Sci World J. 2014:1–15. doi:10.1155/2014/419058
  • Smedley P, Kinniburgh D. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 17(5):517–568. doi:10.1016/S0883-2927(02)00018-5
  • Smith RL, Kent DB, Repert DA, Böhlke J. 2017. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochim Cosmochim Acta. 196:102–120. doi:10.1016/j.gca.2016.09.025
  • Srinivasamoorthy K, Gopinath M, Chidambaram S, Vasanthavigar M, Sarma V. 2014. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J King Saud Univ Sci. 26(1):37–52. doi:10.1016/j.jksus.2013.08.001
  • Sultana J, Farooqi A, Ali U. 2014. Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environ Monit Assess. 186(2):1241–1251. doi:10.1007/s10661-013-3453-3
  • USEPA. 2011. Exposure factors handbook: 2011 edition. USEPA Office of Research and Development, Washington DC.
  • van Geen A, Farooqi A, Kumar A, Khattak JA, Mushtaq N, Hussain I, Ellis T, Singh CK. 2019. Field testing of over 30,000 wells for arsenic across 400 villages of the Punjab plains of Pakistan and India: Implications for prioritizing mitigation. Sci Total Environ. 654:1358–1363. doi:10.1016/j.scitotenv.2018.11.201
  • Van Geen A, Zheng Y, Goodbred S, Horneman A, Aziz Z, Cheng Z, Stute M, Mailloux B, Weinman B, Hoque MA, et al. 2008. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ Sci Technol. 42(7):2283–2288., doi:10.1021/es702316k
  • Wallis I, Prommer H, Berg M, Siade AJ, Sun J, Kipfer R. 2020. The river–groundwater interface as a hotspot for arsenic release. Nat Geosci. 13(4):288–295. doi:10.1038/s41561-020-0557-6
  • Waqas H, Shan A, Khan YG, Nawaz R, Rizwan M, Rehman MS-U, Shakoor MB, Ahmed W, Jabeen M. 2017. Human health risk assessment of arsenic in groundwater aquifers of Lahore, Pakistan. Human Ecol Risk Assess. 23(4):836–850. doi:10.1080/10807039.2017.1288561
  • Xiao J, Jin Z, Wang J, Zhang F. 2015. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau. Quat Int. 380-381:237–246. doi:10.1016/j.quaint.2015.01.021
  • Xie X, Wang Y, Su C, Liu H, Duan M, Xie Z. 2008. Arsenic mobilization in shallow aquifers of Datong Basin: hydrochemical and mineralogical evidences. J Geochem Explor. 98(3):107–115. doi:10.1016/j.gexplo.2008.01.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.