345
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Risks to health from ambient particulate matter (PM2.5) to the residents of Guwahati city, India: An analysis of prediction model

ORCID Icon &
Pages 1094-1111 | Received 04 May 2020, Accepted 06 Aug 2020, Published online: 27 Aug 2020

References

  • Abdullah S, Ismail M, Fong SY. 2017. Multiple linear regression (MLR) models for long term PM10 concentration forecasting during different monsoon seasons. J Sustain Sci Manage. 12(1):60–69.
  • Abdullah S, Ismail M, Fong SY, Ahmed AN. 2016. Evaluation for long term PM10 concentration forecasting using multi linear regression (MLR) and principal component regression (PCR) models. Environ Asia. 9(2):101–110.
  • Barman N, Gokhale S. 2019. Urban black carbon-source apportionment, emissions and long-range transport over the Brahmaputra River Valley. Sci Total Environ. 693:133577. doi:10.1016/j.scitotenv.2019.07.383
  • Bathmanabhan S, Madanayak S, Nagendra S. 2010. Analysis and interpretation of particulate matter PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos Pollut Res. 1(3):1184–1194. doi:10.5094/APR.2010.024
  • Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Henderson SB, Krzyzanowski M, Martin RV, Dingenen RV, et al. 2012. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol. 46(2):652–660. doi:10.1021/es2025752
  • CPCB. 2016. CPCB Bulletin- July 2016. Central Pollution Control Board, Delhi; [accessed Jan 8,2020]. https://www.cpcb.nic.in/openpdffile.php?id=TGF0ZXN0RmlsZS9MYXRlc3RfMTIzX1NVTU1BUllfQk9PS19GUy5wZGY=.
  • Dahiya S, Myllyvirta L, Sivalingam N. 2017. Airpocalypse: assessment of air pollution in Indian cities. Greenpeace Environment Trust, Bengaluru; [accessed Feb 16, 2020]. https://secured-static.greenpeace.org/india/Global/india/Airpoclypse–Not-just-Delhi–Air-in-most-Indian-cities-hazardous–Greenpeace-report.pdf).
  • GMDA. 2019. Existing Land Use Map. Guwahati Metropolitan Development Authority, Guwahati; [accessed Jul 16, 2020]. https://gmda.assam.gov.in/documents-detail/master-plan-guwahati-2025-mapssource.
  • Gurjar BR, Sharma A, Agarwal A, Sharma A, Gupta P, Nagpure AS, Lelieveld J. 2010. Human health risks in megacities due to air pollution. Atmos Environ. 44(36):4606–4613. doi:10.1016/j.atmosenv.2010.08.011
  • Guttikunda SK, Nishadh KA, Jawahar P. 2019. Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Clim. 27:124–141. doi:10.1016/j.uclim.2018.11.005
  • Hara K, Homma J, Tamura K, Inoue M, Karita K, Yano E. 2013. Decreasing trends of suspended particulate matter and PM2.5 concentrations in Tokyo, 1990-2010. J Air Waste Manage Assoc. 63(6):737–748. doi:10.1080/10962247.2013.782372
  • Jinsart W, Sripraparkorn C, Siems ST, Hurley PJ, Thepanondh S. 2010. Application of the air pollution model (TAPM) to the urban air shed of Bangkok, Thailand. IJEP. 42(1/2/3):68–84. doi:10.1504/IJEP.2010.034227
  • Juneng L, Latif MT, Tangang F. 2011. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmos Environ. 45(26):4370–4378. doi:10.1016/j.atmosenv.2011.05.045
  • Klimont Z, Streets DG, Gupta S, Cofala J, Lixin F, Ichikawa Y. 2002. Anthropogenic emissions of non-methane volatile organic compounds in China. Atmos Environ. 36(8):1309–1322. doi:10.1016/S1352-2310(01)00529-5
  • Kovac-Andric E, Brana J, Gvozdic V. 2009. Impact of meteorological factors on ozone concentrations modelled by time series and multivariate statistical methods. Ecol Inform. 4(2):117–122. doi:10.1016/j.ecoinf.2009.01.002
  • Kumar P, Gurjar BR, Nagpure AS, Harrison RM. 2011. Preliminary estimates of nanoparticle number emissions from road vehicles in megacity Delhi and associated health impacts. Environ Sci Technol. 45(13):5514–5521. doi:10.1021/es2003183
  • Kumar R, Joseph AE. 2006. Air pollution concentrations of PM2.5, PM10 and NO2 at ambient and Kerbsite and their correlation in Metro city-Mumbai. Environ Monit Assess. 119(1–3):191–199. doi:10.1007/s10661-005-9022-7
  • Li J, Wang L. 2017. The research of PM2.5 concentrations model based on regression calculation model. AIP Conf Proc. 1794(1):030005. doi:10.1063/1.4971927
  • Mahanta R, Yamane Y. 2020. Climatology of local severe convective storms in Assam. Int J Climatol. 40(2):957–978. doi:10.1002/joc.6250
  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T ASABE. 50:885–900. doi:10.13031/2013.23153
  • Myllyvirta L, Dahiya S, Sivalingam N. 2016. Out of sight: how coal burning advances India’s air pollution crisis. Greenpeace Environment Trust, Bengaluru; [accessed Feb 26, 2020]. http://www.greenpeace.org/india/Global/india/cleanairnation/Reports/Out%20of%20Sight.pdf.
  • Nazif A, Mohammed NI, Malakahmad A, Abualqumboz MS. 2018. Regression and multivariate models for predicting particulate matter concentration level. Environ Sci Pollut Res Int. 25(1):283–289. doi:10.1007/s11356-017-0407-2
  • Pant P, Guttikunda SK, Peltier RE. 2016. Exposure to particulate matter in India: a synthesis of findings and future directions. Environ Res. 147:480–496. doi:10.1016/j.envres.2016.03.011
  • Pant P, Habib G, Marshall JD, Peltier RE. 2017. PM2.5 exposure in highly polluted cities: a case study from New Delhi, India. Environ Res. 156:167–174. doi:10.1016/j.envres.2017.03.024
  • Pant P, Lal RM, Guttikunda SK, Russell AG, Nagpure AS, Ramaswami A, Peltier RE. 2019. Monitoring particulate matter in India: recent trends and future outlook. Air Qual Atmos Health. 12(1):45–58. doi:10.1007/s11869-018-0629-6
  • Sarkar C, Chatterjee A, Singh AK, Ghosh SK, Raha S. 2015. Characterization of black carbon aerosols over Darjeeling – a high altitude Himalayan station in eastern India. Aerosol Air Qual Res. 15(2):465–478. doi:10.4209/aaqr.2014.02.0028
  • Schornobay-Lui E, Alexandrina EC, Aguiar ML, Hanisch WS, Corrêa EM, Correa NA. 2019. Prediction of short and medium term PM10 concentration using artificial neural networks. Manage Env Quality. 30(2):414–436. doi:10.1108/MEQ-03-2018-0055
  • Sharma M, Maloo S. 2005. Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur. India Atmos Environ. 39(33):6015–6026. doi:10.1016/j.atmosenv.2005.04.041
  • Thongthammachart T, Jinsart W. 2019. Estimating PM2.5 concentrations with statistical distribution techniques for health risk assessment in Bangkok. Hum Ecol Risk Assess. 26(7):1848–1863. doi:10.1080/10807039.2019.1613630
  • Tiwari S, Dumka UC, Gautam AS, Kaskaoutis DG, Srivastava AK, Bisht DS, Chakrabarty RK, Sumlin BJ, Solmon F. 2017. Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley: temporal evolution, source apportionment and meteorological dependence. Atmos Pollut Res. 8(1):13–28. doi:10.1016/j.apr.2016.07.008
  • Tiwari G. 2002. Urban transport priorities: meeting the challenge of socio-economic diversity in cities, a case study of Delhi, India. Cities. 19(2):95–103. doi:10.1016/S0264-2751(02)00004-5
  • Ul-Saufie AZ, Yahaya AS, Ramli NA, Hamid HA. 2011. Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters. Int J Appl Sci Technol. 1:42–49.
  • Ul-Saufie AZ, Yahaya AS, Ramli N, Hamid HA. 2012. Performance of multiple linear regression model for long-term PM10 concentration prediction based on gaseous and meteorological parameters. J Appl Sci. 12(14):1488–1494. doi:10.3923/jas.2012.1488.1494
  • USEPA. 2016. Human health risk assessment. USEPA, Washington, D.C.; [accessed Feb 28, 2020]. http://www.epa.gov/risk/health-risk.html.
  • Vlachogianni A, Karppinen A, Kassomenos P, Karakitsios S, Kukkonen J. 2011. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Sci Total Environ. 409(8):1559–1571. doi:10.1016/j.scitotenv.2010.12.040
  • WHO. 2018. Concentration occurrence or they should stay away from the high-risk areas. WHO, Geneva; [accessed Dec 10, 2019]. http://www.who.int/phe/health_topics/outdoorair/.
  • Zhang Q, Streets DG, Carmichael GR, He KB, Huo H, Kannari A, Klimont Z, Park IS, Reddy S, Fu JS, et al. 2009. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys. 9(14):5131–5153. doi:10.5194/acp-9-5131-2009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.