57
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Exposure level and risk assessment of atrazine in Chinese adults based on the systematic review data and the Monte Carlo simulation method

, , , , , & show all
Pages 394-408 | Received 23 Sep 2023, Accepted 21 Apr 2024, Published online: 19 May 2024

References

  • Almasi H, Takdastan A, Jaafarzadeh N, Babaei AA, Tahmasebi Birgani Y, Cheraghian B, Saki A, Jorfi S. 2020. Spatial distribution, ecological and health risk assessment and source identification of atrazine in Shadegan international wetland, Iran. Mar Pollut Bull. 160:111569. doi: 10.1016/j.marpolbul.2020.111569.
  • Bhandari G, Zomer P, Atreya K, Mol HGJ, Yang X, Geissen V. 2019. Pesticide residues in Nepalese vegetables and potential health risks. Environ Res. 172:511–521. doi: 10.1016/j.envres.2019.03.002.
  • Chandra PN, Usha K. 2021. Removal of atrazine herbicide from water by polyelectrolyte multilayer membranes. Mater Today Proc. 41:622–627. doi: 10.1016/j.matpr.2020.05.263.
  • Chen Y, Jiang Z, Wu D, Wang H, Li J, Bi M, Zhang Y. 2019. Development of a novel bio-organic fertilizer for the removal of atrazine in soil. J Environ Manage. 233:553–560. doi: 10.1016/j.jenvman.2018.12.086.
  • Das S, Sakr H, Al-Huseini I, Jetti R, Al-Qasmi S, Sugavasi R, Sirasanagandla SR. 2023. Atrazine toxicity: the possible role of natural products for effective treatment. Plants-Basel. 12(12):2278. doi: 10.3390/plants12122278.
  • Dehghani M, Gharehchahi E, Jafari S, Moeini Z, Derakhshan Z, Ferrante M, Conti GO. 2022. Health risk assessment of exposure to atrazine in the soil of Shiraz farmlands, Iran. Environ Res. 204(Pt B):112090. doi: 10.1016/j.envres.2021.112090.
  • Dehghani MH, Norouzian Baghani A, Fazlzadeh M, Ghaffari HR. 2019. Exposure and risk assessment of BTEX in indoor air of gyms in Tehran, Iran. Microchem J. 150:104135. doi: 10.1016/j.microc.2019.104135.
  • Dong W, Zhang Y, Quan X. 2020. Health risk assessment of heavy metals and pesticides: a case study in, the main drinking water source in Dalian, China. Chemosphere. 242:125113. doi: 10.1016/j.chemosphere.2019.125113.
  • Dujardin B, Bocca V. 2019. Cumulative dietary exposure assessment of pesticides that have chronic effects on the thyroid using SAS (R) software. EFSA J. 17(9):e05763. doi: 10.2903/j.efsa.2019.5763.
  • Eslami Z, Mahdavi V, Tajdar-Oranj B. 2021. Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran. Environ Sci Pollut Res Int. 28(31):42037–42050. doi: 10.1007/s11356-021-13542-0.
  • Fang W, Peng Y, Muir D, Lin J, Zhang X. 2019. A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ Int. 131:104994. doi: 10.1016/j.envint.2019.104994.
  • Galbiati V, Buoso E, d‘Emmanuele di Villa Bianca R, Paola RD, Morroni F, Nocentini G, Racchi M, Viviani B, Corsini E. 2021. Immune and nervous systems interaction in endocrine disruptors toxicity: the case of Atrazine. Front Toxicol. 3:649024. doi: 10.3389/ftox.2021.649024.
  • Han Z, Xiuli D, Zinliang Z, Zhanlu L, Lingchuan G. 2021. Health risk assessment of atrazine based on Monte Carlo Simulation method. Environ Monit Forewarn. 13:75–79.
  • He S, Chen S, Zhang M-S, Li T-Y, Liang Y. 2015. Health risk assessment on Atrazine in drinking water source of Hainan. Environ Monit China. 31:12–16.
  • Jian Y, Yunting X, Xianghong T, Rong Z, Zhanqiang B. 2021. Atrazine and its metabolites (ATZs) in source water, finished water, and tap water from drinking water treatment plants and its human risk assessment in Zhoukou City, China. Hum Ecol Risk Assess. 27:1926–1938.
  • Kermani M, Dowlati M, Gholami M, Sobhi HR, Azari A, Esrafili A, Yeganeh M, Ghaffari HR. 2021. A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in vegetables. Chemosphere. 270:129382. doi: 10.1016/j.chemosphere.2020.129382.
  • Kumari D, John S. 2019. Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere. 224:162–167. doi: 10.1016/j.chemosphere.2019.02.091.
  • Lehmann E, Turrero N, Kolia M, Konaté Y, de Alencastro LF. 2017. Dietary risk assessment of pesticides from vegetables and drinking water in gardening areas in Burkina Faso. Sci Total Environ. 601-602:1208–1216. doi: 10.1016/j.scitotenv.2017.05.285.
  • Li C, Zhu H, Li C, Qian H, Yao W, Guo Y. 2021. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 354:129552. doi: 10.1016/j.foodchem.2021.129552.
  • Luo DH, Wan X, Liu J, Tong T. 2017. How to estimate the sample mean and standard deviation from the sample size, median, extremes or quartiles? Chin J Evid-Based Med. 17:1350–1356.
  • Mahdavi V, Eslami Z, Gordan H, Ramezani S, Peivasteh-Roudsari L, Maˈmani L, Mousavi Khaneghah A. 2022. Pesticide residues in green-house cucumber, cantaloupe, and melon samples from Iran: a risk assessment by Monte Carlo simulation. Environ Res. 206:112563. doi: 10.1016/j.envres.2021.112563.
  • Martins EC, de Freitas Melo V, Bohone JB, Abate G. 2018. Sorption and desorption of atrazine on soils: the effect of different soil fractions. Geoderma. 322:131–139. doi: 10.1016/j.geoderma.2018.02.028.
  • Niu L, Xu C, Yao Y, Liu K, Yang F, Tang M, Liu W. 2013. Status, influences and risk assessment of hexachlorocyclohexanes in agricultural soils across China. Environ Sci Technol. 47(21):12140–12147. doi: 10.1021/es401630w.
  • Niu Z-G, Zang X, Zhang J-G. 2014. Health risk assessment of exposure to organic matter from the use of reclaimed water in toilets. Environ Sci Pollut Res Int. 21(10):6687–6695. doi: 10.1007/s11356-014-2583-7.
  • Peng Y, Fang W, Krauss M, Brack W, Wang Z, Li F, Zhang X. 2018. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk. Environ Pollut. 241:484–493. doi: 10.1016/j.envpol.2018.05.061.
  • Pouzou JG, Cullen AC, Yost MG, Kissel JC, Fenske RA. 2018. Comparative probabilistic assessment of occupational pesticide exposures based on regulatory assessments. Risk Anal. 38(6):1223–1238. doi: 10.1111/risa.12936.
  • Prado B, Duwig C, Hidalgo C, Müller K, Mora L, Raymundo E, Etchevers JD. 2014. Transport, sorption and degradation of atrazine in two clay soils from Mexico: andosol and vertisol. Geoderma. 232–234:628–639. doi: 10.1016/j.geoderma.2014.06.011.
  • Qiao D, et al. 2017. Pollution characteristics and risk assessment of herbicide residues in shellfish from Shandong coastal area. Chin Fishery Quality Standards. 7:22–29.
  • Ralebitso TK, Senior E, van Verseveld HW. 2002. Microbial aspects of atrazine degradation in natural environments. Biodegradation. 13:11–19.
  • Ritter R, Scheringer M, MacLeod M, Hungerbühler K. 2011. Assessment of nonoccupational exposure to DDT in the tropics and the North: relevance of uptake via inhalation from indoor residual spraying. Environ Health Perspect. 119(5):707–712. doi: 10.1289/ehp.1002542.
  • Ru Q-M, Feng Q, He J-Z. 2013. Risk assessment of heavy metals in honey consumed in Zhejiang province, southeastern China. Food Chem Toxicol. 53:256–262. doi: 10.1016/j.fct.2012.12.015.
  • Shahrbabki PE, Hajimohammadi B, Shoeibi S, Elmi M, Yousefzadeh A, Conti GO, Ferrante M, Amirahmadi M, Fakhri Y, Mousavi Khaneghah A, et al. 2018. Probabilistic non-carcinogenic and carcinogenic risk assessments (Monte Carlo simulation method) of the measured acrylamide content in Tah-dig using QuEChERS extraction and UHPLC-MS/MS. Food Chem Toxicol. 118:361–370. doi: 10.1016/j.fct.2018.05.038.
  • Shokoohi R, Khamutian S, Samadi MT, Karami M, Heshmati A, Leili M, Shokoohizadeh MJ. 2022. Effect of household processing on pesticide residues in post-harvested tomatoes: determination of the risk exposure and modeling of experimental results via RSM. Environ Monit Assess. 194(2):86. doi: 10.1007/s10661-022-09757-4.
  • Sun JT, Pan LL, Zhan Y, Tsang DCW, Zhu LZ, Li XD. 2017. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environ Geochem Health. 39(2):369–378. doi: 10.1007/s10653-016-9853-x.
  • Sun X, Liu F, Shan R, Fan Y. 2019. Spatiotemporal distributions of Cu, Zn, metribuzin, atrazine, and their transformation products in the surface water of a small plain stream in eastern China. Environ Monit Assess. 191(7):433. doi: 10.1007/s10661-019-7556-3.
  • Taverna ME, Busatto CA, Lescano MR, Nicolau VV, Zalazar CS, Meira GR, Estenoz DA. 2018. Microparticles based on ionic and Organosolv lignins for the controlled release of atrazine. J Hazard Mater. 359:139–147. doi: 10.1016/j.jhazmat.2018.07.010.
  • Tesfamichael AA, Caplan AJ, Kaluarachchi JJ. 2005. Risk-cost-benefit analysis of atrazine in drinking water from agricultural activities and policy implications. Water Resour Res. 41(5). doi: 10.1029/2004WR003497.
  • Udikovic-Kolic N, Scott C, Martin-Laurent F. 2012. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol. 96:1175–1189.
  • USEPA. 1991. Risk assessment guidance for superfund: volume I. Human health evaluation manual (Part B, development of risk-based preliminary remediation goals). Office of emergency and remedial response. Washington, DC: US Environmental Protection Agency.
  • USEPA. 2011. Exposure factors handbook: 2011 edition. Washington (DC): US Environmental Protection Agency. EPA/600/R-090/052F.
  • Utembe W, Gulumian M. 2015. Challenges and research needs for risk assessment of pesticides for registration in Africa. Hum Ecol Risk Assess. 21(6):1518–1541. doi: 10.1080/10807039.2014.958940.
  • Wang A, Hu X, Wan Y, Mahai G, Jiang Y, Huo W, Zhao X, Liang G, He Z, Xia W, et al. 2020. A nationwide study of the occurrence and distribution of atrazine and its degradates in tap water and groundwater in China: assessment of human exposure potential. Chemosphere. 252:126533. doi: 10.1016/j.chemosphere.2020.126533.
  • Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C, Freeman JL. 2017. Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and DNMT expression. Food Chem Toxicol. 109(Pt 1):727–734. doi: 10.1016/j.fct.2017.08.041.
  • Xu YP, Yu YY, Fu WJ, Tao Y, Wu J, He Q. 2016. Introduction of methods for estimating standardized mean difference when missing standard deviation. Chin J Evid-Based Cardiovasc Med. 8:1412–1415.
  • Yaghmaien K, Hadei M, Hopke P, Gharibzadeh S, Kermani M, Yarahmadi M, Emam B, Shahsavani A. 2019. Comparative health risk assessment of BTEX exposures from landfills, composting units, and leachate treatment plants. Air Qual Atmos Health. 12(4):443–451. doi: 10.1007/s11869-019-00669-w.
  • Yin Y, Li T, Kuang D, Lu Y, Shen Y, Xu J, Jiang S, Wang X. 2019. Probabilistic health risk assessment of nitrosamines in drinking water of Shaoxing, Zhejiang, China. Environ Sci Pollut Res Int. 26(6):5485–5499. doi: 10.1007/s11356-018-4026-3.
  • Yu J, Bian ZQ, Tian XH, Zhang J, Zheng HH. 2018. Ecological risk assessment and health risk assessment of atrazine residues in decentralized drinking water system in rural area of a northern province of China. J Environ Health. 35:726–729.
  • Yuan L, Chai Y, Li C, Liu R, Chen Z, Li L, Li W, He Y. 2021. Dissipation, residue, dietary, and ecological risk assessment of atrazine in apples, grapes, tea, and their soil. Environ Sci Pollut Res Int. 28(26):35064–35072. doi: 10.1007/s11356-021-13133-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.