342
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Identification of Newly Isolated Talaromyces pinophilus and Statistical Optimization of β-Glucosidase Production Under Solid-State Fermentation

, , &

REFERENCES

  • Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and Comparative Profiles in the Production Technologies Using Solid-State and Submerged Fermentation for Microbial Cellulases. Enzyme Microb. Technol. 2010, 46, 541–549.
  • Shewale, J.G. β-Glucosidase: Its Role in Cellulase Synthesis and Hydrolysis of Cellulose. Int. J. Biochem. 1982, 2(14), 435–443.
  • Job, J.; Sukumaran, R.K.; Jayachandran, K. Production of a Highly Glucose Tolerant β-glucosidase by Paecilomyces variotii MG3: Optimization of Fermentation Conditions Using Plackett–Burman and Box–Behnken Experimental Designs. World J. Microbiol. Biotechnol. 2010, 26(8), 1385–1391.
  • Christakopoulos, P.; Goodenough, P.W.; Kekos, D.; Macris, B.J.; Claeyssens, M.; Bhat, M.K. Purification and Characterization of an Extracellular β-Glucosidase With Transglucosylation and Exo-Glucosidase and Activities From Fusarium oxysporum. Eur. J. Biochem. 1994, 224, 379–385.
  • Shinoyama, H.; Takei, K.; Ando, A.; Fujii, T.; Sasaki, M.; Doi, Y. Enzymatic Synthesis of Useful Alkyl β-Glucosides. Agric. Biol. Chem. 1991, 55, 1679–1681.
  • Saber, W.I.A.; El-Naggar, N.E.; Abdel-Aziz, S.A. Bioconversion of Lignocellulosic Wastes Into Organic Acids by Cellulolytic Rock Phosphate-Solubilizing Fungal Isolates Grown Under Solid-State Fermentation Conditions. Res. J. Microbiol. 2010, 5(1), 1–20.
  • El-Naggar, N.E.; El-Hersh, M.S. Organic Acids Associated with Saccharification of Cellulosic Wastes During Solid-State Fermentation. J. Microbiol. 2011, 49(1), 58–65.
  • Henrissat, B. A Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities (Part 2). Biochem. J. 1991, 280, 309–316.
  • Pandey, A.; Azmi, W.; Singh, J.; Banerjee, U.C. Types of Fermentation and Factors Affecting it. In Biotechnology: Food Fermentation, Joshi, V.K. Pandey, A.; Eds; Educational Publishers: New Delhi, India, 1999; pp. 383–426.
  • Babu, K.R.; Satyanarayana, T. α-Amylase Production by Thermophilic Bacillus coagulans in Solid State Fermentation. Process Biochem. 1995, 30, 305–309.
  • Raimbault, M. General and Microbiological Aspects of Solid State Fermentation. Electron. J. Biotechnol. 1998, 1, 1–20.
  • Tengerdy, R.P.; Szakacs, G. Bioconversion of Lignocellulose in Solid State Fermentation. Biochem. Eng. J. 2003, 13, 169–179.
  • Xu, C.P.; Yun, J.W. Optimization of Submerged-Culture Conditions for Mycelia Growth and Exo-Biopolymer Production by auricularia polytricha (Wood Ears Fungus) Using the Methods of Uniform Design and Regression Analysis. Biotechnol. Appl. Biochem. 2003, 38, 193–199.
  • Chen, H.C. Optimizing the Concentrations of Carbon, Nitrogen and Phosphorus in Citric Acid Fermentation with Response Surface Method. J. Food Biotechnol. 1996, 10, 13–27.
  • Plackett, R.L.; Burman, J.P. The Design of Optimum Multifactorial Experiments. Biometrika 1946, 33, 305–325.
  • Hye, J.J.; Dae, S.L.; Donghee, P. Optimization of Key Process Variables for Enhanced Hydrogen Production by Enterobacter aerogenes Using Statistical Methods. Bioresour. Technol. 2008, 99, 2061–2066.
  • El-Naggar, N.E.; Abdelwahed, N.A.M. Application of Statistical Experimental Design for Optimization of Silver Nanoparticles Biosynthesis by a Nanofactory Streptomyces viridochromogenes. J. Microbiol. 2014a, 52(1), 53–63.
  • El-Naggar, N.E.; Abdelwahed, N.A.M.; Darwesh, O.M.M. Fabrication of Biogenic Antimicrobial Silver Nanoparticles by Streptomyces aegyptia NEAE 102 as Eco-Friendly Nanofactory. J. Microbiol. Biotechnol. 2014b, 24(4), 453–464.
  • Gunawan, E.R.; Basri, M.; Rahman, M.B.A.; Salleh, A.B.; Rahman, R.N.Z.A. Study on Response Surface Methodology (RSM) of Lipase-Catalyzed Synthesis of Palm-Based Wax Ester. Enzyme Microbial Technol. 2005, 37, 739–744.
  • Cheng, S.W.; Wu, C.F.J. Factor screening and response surface exploration. Statist. Sin. 2001, 11, 553–604.
  • White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes For Phylogenetics. In PCR Protocols: A Guide to Methods and Applications, Innis, M.A. Gelfand, D.H. Sninsky, J.J. White, T.J. Eds.; Academic Press: New York, NY, 1990; pp. 315–322.
  • Sambrook, J.; Rusell, D.W. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001, vol. 3, pp. 51–54.
  • Purkarthofer, H.; Sinner, M.; Steiner, W. Cellulase-Free Xylanase From Thermomyces lanuginosus: Optimization of Production in Submerged and Solid-State Culture. Enzyme Microbial Technol. 1993, 15(8), 677–682.
  • Shamala, T.R.; Sreekantiah, K.R. Production of Cellulases and D-Xylanase by Some Selected Fungal Isolates. Enzyme Microbial Technol. 1986, 8(3), 178–182.
  • Wood, T.M.; Bhat, K.M. Methods for Measuring Cellulase Activities. Methods Enzymol. 1988, 160, 87–112.
  • Nelson, N. A Photometric Adaptation of Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380.
  • Somogyi, M. Notes on Sugar Determination. J. Biol. Chem. 1952, 195, 19–23.
  • Bradford, M.A. Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein°Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Box, G.E.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475.
  • Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425.
  • Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599.
  • Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985, 39, 783–791.
  • Riswan Ali, S.B.; Muthuvelayudham, R.; Viruthagiri, T. Statistical Optimization of Nutrients For Production Cellulase and Hemicellulase From Rice Straw. Asian J. Biochem. Pharm. Res. 2012, 2(2), 154–174.
  • Khuri, A.L.; Cornell, J.A. Response Surfaces: Design and Analysis. Marcel Dekker: New York, NY, 1987, pp. 1–17, 254.
  • Lu, D.M.; Jiang, L.Y.; Chen, L.A.; Liu, J.Z.; Mao, Z.W. Optimization of Fermentation Conditions of the Engineered Corynebacterium glutamicum to Enhance l-Ornithine Production by Response Surface Methodology. J. Biotechnol. Biomater. 2011, 1, 1–7.
  • Liu, J.Z.; Weng, L.P.; Zhang, Q.L. Optimization of Glucose Oxidase Production by Aspergillus niger in a Benchtop Bioreactor Using Response Surface Methodology. World J. Microbiol. Biotechnol. 2003, 19, 317–323.
  • Pandey, A.; Selvakumar, P.; Soccol, C.R.; Nigam, P. Solid State Fermentation For the Production of Industrial Enzymes. Current Sci. 1999b, 77, 149–162.
  • Nandakumar, M.P.; Thakur, M.S.; Rghavavarao, K.S.M.S.; Ghilodyal, N.P. Mechanism of Solid Particle Degradation by Aspergillus niger in Solid State Fermentation. Proc. Biochem. 1994, 29, 545–551.
  • Gervais, P.; Molin, P. The Role of Water in Solid-State Fermentation. Biochem. Eng. J. 2003, 13, 85–101.
  • Panagiotou, G.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production of Cellulolytic and Xylanolytic Enzymes by Fusarium oxysporum Grown on Corn Stover in Solid State Fermentation. Ind. Crop. Prod. 2003, 18, 37–45.
  • Sherief, A.A.; El-Naggar, N.E.; Hamza, S.S. Bioprocessing of Lignocellulosic Biomass For Production of Renewable Bioethanol Using Thermotolerant Aspergillus fumigates Under Solid State Fermentation Conditions. Biotechnol. 2010, 9, 513–522.
  • El-Naggar, N.E.; Sherief, A.A.; Hamza, S.S. Bioconversion Process of Rice Straw by Thermotolerant Cellulolytic Streptomyces viridiochromogenes For Production of Bioethanol Under SSF Conditions. Afr. J. Biotechnol. 2011, 10(56), 11998–12011.
  • Oriol, E.; Schettino, B.; Viiùegra-Gonzalez, G.; Raimbault, M. Solid-State Culture of Aspergillus niger on Support. J. Ferment. Technol. 1988, 66, 57–62.
  • Jatinder, K.; Chadha, B.S.; Saini, H.S. Optimization of Medium Components For Production of Cellulase by Melanocarpus sp. mtcc3922 Under Solid State Fermentation. World J. Microbiol. Biotechnol. 2006, 22, 15–22.
  • Spiridonov, N.A.; Wilson, D.B. Regulation of Biosynthesis of Individual Cellulases in Thermomonospora fusca. J. Bacteriol. 1998, 180(4), 3529–3532.
  • Malik, S.K.; Mukhtar, H.; Farooqi, A.A.; Ul-Haq, I. Optimization of Process Parameters for the Biosynthesis of Cellulases by Trichoderma viride. Pak. J. Bot. 2010, 42(6), 4243–4251.
  • Mekala, N.K.; Singhania, R.R.; Sukumaran, R.K.; Pandey, A. Cellulose Production Under Solid-State Fermentation by Trichoderma ressei rut C30: Statistical Optimization of Process Parameters. Appl. Biochem. Biotechnol. 2008, 151(2–3), 122–131.
  • Mangat, M.K.; Mandhar, C.L. Effect of Cultural Conditions on Production of Cellulases by Helminthosporium teres. Panjab Univ. Res. J. 1998, 46(1), 139–145.
  • Chellapandi, P.; Jani, H.M. Production of Endoglucanase by the Native Strains of Streptomyces Isolates in Submerged Fermentation. Braz. J. Microbiol. 2008, 39(1), 122–127.
  • El-Naggar, N.E.; Abdelwahed, N.A.M. Optimization of Process Parameters For the Production of Alkali-Tolerant Carboxymethyl Cellulase by Newly Isolated Streptomyces sp. Strain NEAE-D. Afric. J. Biotechnol. 2012, 11(5), 1185–1196.
  • Shahriarinour, M.; Abdul Wahab, M.N.; Rosfarizan, M.; Shuhaimi, M.; Arbakariya, B. Effect of Medium Composition and Cultural Condition on Cellulase Production by Aspergillus terreus. Afr. J. Biotechnol. 2011, 10(38), 7459–7467.
  • Wen, Z.; Liao, W.; Chen, S. Production of Cellulase/β-Glucosidase by the Mixed Fungi Culture Trichoderma reesei and Aspergillus phoenicis on Dairy Manure. Process Biochem. 2005, 40, 3087–3094.
  • Krishna, H.S.; Sekhar Rao, K.C.; Suresh Babu, J.; Srirami Reddy, D. Studies on the Production and Application of Cellulase from Trichoderma reesei QM-9414. Bioprocess Biosystems Eng. 2000, 22, 467–470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.