401
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes

&

References

  • Pandey, A.; Soccol, C.R.; Mitchell, D. New Developments in Solid State Fermentation: I—Bioprocesses and Products. Process Biochem. 2000, 35, 1153–1169.
  • Vazquez, M.J.; Alonso, J.L.; Dominguez, H.; Parajo, J.C. Xylooligosaccharides: Manufacture and Applications. Trends Food Sci. Technol. 2000, 11, 387–393.
  • Wong, K.K.Y.; Tan, L.U.L.; Saddler, J.N. Multiplicity of β-1,4-Xylanase in Microorganisms: Functions and Applications. Microbial Rev. 1988, 52, 305–317.
  • Aachary, A.A.; Prapulla, S.G. Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications. Comp. Rev. Food Sci. Food Safety 2011, 10, 2–16.
  • Hsu, C.K.; Liao, J.W.; Chung, Y.C.; Hsieh, C.P.; Chan, Y.C. Xylooligosaccharides and Fructooligosaccharides Affect the Intestinal Microbiota and Precancerous Colonic Lesion Development in Rats. J. Nutr. 2004, 134, 1523–1528.
  • Sheu, W.H.H.; Lee, I.T.; Chen, W.; Chan, Y.C. Effects of Xylooligosaccharides in Type 2 Diabetes Mellitus. J. Nutr. Sci. Vitaminol. 2008, 54, 396–401.
  • Alonso, J.L.; Dominguez, H.; Garrote, G.; Parajo, J.C.; Vazquez, M.J. Xylooligosaccharides: Properties and Production Technologies. Electron. J. Environ. Agric. Food Chem. 2003, 2(1), 230–232.
  • Gessesse, A.; Mamo, G. High-Level Xylanase Production by an Alkaliphilic Bacillus sp. by Using Solid-State Fermentation. Enzyme Microb. Technol. 1999, 25, 68–72.
  • Gobinath, R.; Chandraraj, K. Hyper-Production of α-Amylase From Agro-Residual Medium With High-Glucose in SSF Using Catabolite Derepressed Bacillus subtilis KCC103. J. Basic Microbiol. 2010, 50, 336–343.
  • Bachmann, S.L.; McCarthy, A.J. (1991). Purification and Cooperative Activity of Enzymes Constituting the Xylan-Degrading System of Thermomonospora fusca. Appl. Environ. Microbiol. 1991, 57, 2121–2130.
  • Sunna, A.; Antranikian, G. (1997). Xylanolytic Enzymes From Fungi and Bacteria. Crit. Rev. Biotechnol. 1997, 17, 39–67.
  • Fariha, S. Investigation of β-Xylosidase, α-L-Arabinofuranosidase and Acetylesterase From Thermotoga hypogea. PhD thesis, University of Waterloo Waterloo, Ontario, Canada, 2008.
  • Poutanen, K.; Ratto, M.; Pulls, P.; Viikari, L. Evaluation of Different Microbial Xylanolytic System. J. Biotechnol. 1987, 6, 49–60.
  • Reddy, S.S.; Chandraraj, K. Characterization of Enzyme Released Antioxidant Phenolic Acids and Xylooligosaccharides From Different Graminaceae or Poaceae Members. Food Biotechnology. 2013, 27(4), 357–370.
  • Reddy, S.S.; Chandraraj, K. Production of Prebiotics and Antioxidants as Health Food Supplements From Lignocellullosic Materials Using Multi Enzymatic Hydrolysis. Int. J. Chem. Sci. 2010, 8, S535–549.
  • Lindner, C.; Stulk, J.; Hecker, M. (1994). Regulation of Xylanolytic Enzymes in Bacillus subtilis. Microbiology. 1994, 140, 753–757.
  • Miller, G.L. Use of Dinitro Salicylic Acid Reagent for Determination of Reducing Sugar. Anal Chem. 1959, 31, 426–428.
  • Sanghi, A.; Garg, N.; Sharma, J.; Kuhar, K.; Kuhad, R.C.; Gupta, V.K. Optimization of Xylanase Production Using Inexpensive Agro-Residues by Alkalophilic Bacillus subtilis ASH in Solid-State Fermentation. World J. Microbiol. Biotechnol. 2008, 24, 633–640.
  • Rahardjo, Y.S.P.; Jolink, F.; Haemers, S.; Tramper, S.; Rinzema, A. Significance of Bed Porosity, Bran and Specific Surface Area in Solid-State Cultivation of Aspergillus oryzae. Biomol. Eng. 2005, 22, 133–139.
  • Anto, H.; Trivedi, U.; Patel, K. (2006). Alpha Amylase Production by Bacillus cereus MTCC 1305 Using Solid-State Fermentation. Food Technol. Biotechnol. 2006, 44, 241–245.
  • Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. (2007). Oil Cakes and Their Biotechnological Applications—A Review. Bioresource Technol. 2007, 98, 2000–2009.
  • Poorna, C.A.; Prema, P. Production of Cellulase-Free Endoxylanase From Novel Alkalophilic Thermotolerent Bacillus pumilus by Solid-State Fermentation and Its Application in Wastepaper Recycling. Bioresource Technol. 2007, 98, 485–490.
  • Sodhi, K.H.; Sharma, K.; Gupta, J.K.; Soni, S.K. Production of a Thermostable α-Amylase From Bacillus sp. PS-7 by Solid State Fermentation and Its Synergistic Use in the Hydrolysis of Malt Starch for Alcohol Production. Process Biochem. 2005, 40, 525–534.
  • Kunamneni, A.; Permaul, K.; Singh, S. Amylase Production in Solid State Fermentation by the Thermophilic Fungus Thermomyces lanuginosus. J. Biosci. Bioeng. 2005, 100, 168–171.
  • Baysal, Z.; Uyar, F.; Aytekin, C. Solid State Fermentation for Production of α-Amylase by a Thermotolerant Bacillus subtilis From Hot-Spring Water. Process Biochem. 2003, 38, 1665–1668.
  • Archana, A.; Satyanarayana, T. Xylanase Production by Thermophilic Bacillus licheniformis A99 in Solid-State Fermentation. Enzyme Microbial Technol. 1997, 21, 12–17.
  • Gangadharan, D.; Sivaramakrishnan, S.; Nampoothiri, K.M.; Pandey, A. Solid Culturing of Bacillus amyloliquefaciens for Alpha Amylase Production. Food Technol. Biotechnol. 2006, 44, 269–274.
  • Battan, B.; Sharma, J.; Kuhad, R.C. High-Level Xylanase Production by Alkaliphilic Bacillus pumilus ASH Under Solid State Fermentation. World J. Microbiol. Biotechnol. 2006, 22, 1281–1287.
  • Rajaram, S.; Verma, A. Production and Characterization of Xylanase From Bacillusthermoalkalophilus Grown on Agricultural Wastes. Appl. Microbiol. Biotechnol. 1990, 34, 141–144.
  • Schallmey, M.; Singh, A.; Ward, O.P. (2004). Developments in the Use of Bacillus Species for Industrial Production. Can. J. Microbiol. 2004, 50, 1–17.
  • Bragatto, J., Segato, F., Squina, F.M. (2013). Production of Xylooligosaccharides (XOS) From Delignified Sugarcane Bagasse by Peroxide-HAc Process Using Recombinant Xylanase From Bacillus subtilis. Industrial Crops and Products. 2013, 51, 123–129.
  • Gattinge, L.D., Duvnjak, Z., Khan, A.W. (1990). The Use of Canola Meal as a Substrate for Xylanase Production by Trichoderma reesei. Appl. Microbiol. Biotechnol. 1990, 33, 21–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.