637
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology

, , &

References

  • Henkel, M.; Müller, M.M.; Kügler, J.H.; Lovaglio, R.B.; Contiero, J.; Syldatk, C.; Hausmann, R. Rhamnolipids as Biosurfactants From Renewable Resources: Concepts for Next-Generation Rhamnolipid Production. Process Biochem. 2012, 47(8), 1207–1219.
  • Wan Nawawi, W.M.F.; Jamal, P.; Alam, M.Z. Utilization of Sludge Palm Oil as a Novel Substrate for Biosurfactant Production. Bioresource Technol. 2010, 101(23), 9241–9247.
  • Sriram, M.I.; Gayathiri, S.; Gnanaselvi, U.; Jenifer, P.S.; Mohan Raj, S.; Gurunathan, S. Novel Lipopeptide Biosurfactant Produced by Hydrocarbon Degrading and Heavy Metal Tolerant Bacterium Escherichia fergusonii KLU01 as a Potential Tool for Bioremediation. Bioresource Technol. 2011, 102(19), 9291–9295.
  • Amani, H.; Müller, M.M.; Syldatk, C.; Hausmann, R. Production of Microbial Rhamnolipid by Pseudomonas aeruginosa MM1011 for Ex Situ Enhanced Oil Recovery. Appl. Biochem. Biotechnol. 2013, 170(5), 1080–1093.
  • Singh, P.B.; Saini, H.S. Exploitation of Agro-Industrial Wastes to Produce Low-Cost Microbial Surfactants. In Biotransformation of Waste Biomass into High Value Biochemicals, Brar, S.K., Dhillon, G.S., Soccol, C.R., Eds. Springer: New York, NY, 2014; pp. 445–471.
  • Madhu, A.N.; Prapulla, S.G. Evaluation and Functional Characterization of a Biosurfactant Produced by Lactobacillus plantarum CFR 2194. Appl. Biochem. Biotechnol. 2014, 172(4), 1777–1789.
  • Pathak, K.V.; Keharia, H. Application of Extracellular Lipopeptide Biosurfactant Produced by Endophytic Bacillus subtilis K1 Isolated From Aerial Roots of Banyan (Ficus benghalensis) in Microbially Enhanced Oil Recovery (MEOR). 3 Biotechnology 2014, 4(1), 41–48.
  • Silva, R. de C.F.S.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills. Int. J. Mol. Sci. 2014, 15(7), 12523–12542.
  • Pradhan, A.K.; Pradhan, N.; Mall, G.; Panda, H.T.; Sukla, L.B.; Panda, P.K.; Mishra, B.K. Application of Lipopeptide Biosurfactant Isolated from a Halophile: Bacillus tequilensis CH for Inhibition of Biofilm. Appl. Biochem. Biotechnol. 2013, 171(6), 1362–1375.
  • Lu, N.; Zhou, S.-G.; Zhang, J.-T.; Ni, J.-R. Electricity Generation From Corn Steepwater Using Microbial Fuel Cell Technology. Huan Jing Ke Xue 2009, 30(2), 563–567.
  • Maddipati, P.; Atiyeh, H.K.; Bellmer, D.D.; Huhnke, R.L. Ethanol Production From Syngas by Clostridium Strain P11 Using Corn Steep Liquor as a Nutrient Replacement to Yeast Extract. Bioresource Technol. 2011, 102(11), 6494–6501.
  • Ali, H.R.; Ismail, D.A.; El-Gendy, N.S. The Biotreatment of Oil-Polluted Seawater by Biosurfactant Producer Halotolerant Pseudomonas aeruginosa Asph2. Energy Sources A, 2014, 36, 1429–1436.
  • Silva, E.J.; Rocha e Silva, N.M.P.; Rufino, R.D.; Luna, J.M.; Silva, R.O.; Sarubbo, L.A. Characterization of a Biosurfactant Produced by Pseudomonas cepacia CCT6659 in the Presence of Industrial Wastes and Its Application in the Biodegradation of Hydrophobic Compounds in Soil. Colloids Surf. B Biointerfaces 2014, 117, 36–41.
  • Berikten, D.; Kivanc, M. Optimization of Solid-State Fermentation for Phytase Production by Thermomyces lanuginosus Using Response Surface Methodology. Prep. Biochem. Biotechnol. 2014, 44(8), 137–146.
  • Advanced Manufacturing Technologies, Proceedings of the International Conference on Advanced Manufacturing Technologies at Central Mechanical Engineering Research Institute (CMERI), Durgapur during 29–30th November 2007. Banerjee, A.J., Chowdhury, A.K., Sinha, G.P., Eds. Allied Publishers: New Delhi, India, 2007.
  • Lazić, Ž.R. Design of Experiments in Chemical Engineering: A Practical Guide. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005.
  • Coruh, S.; Elevli, S.; Geyikçi, F. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste. Sci. World J. 2012, 2012, 1–8.
  • U.S. Department of Commerce. NIST/SEMATECH Engineering Statistics Handbook. http://www.nist.gov/itl/sed/gsg/handbook_project.cfm (accessed November 1, 2013).
  • Kadirgama, K.; Muhamad, M.N.; Rahman, M.M.; Mohd Ruzaimi, M.R. Optimization of Surface Roughness in End Milling on Mould Aluminium Alloys (AA6061-T6) Using Response Surface Method and Radian Basis Function Network. Jordan J. Mech. Ind. Eng. 2008, 2(4), 209–214.
  • Lotfabad, T.B.; Abassi, H.; Ahmadkhaniha, R.; Roostaazad, R.; Masoomi, F.; Zahiri, H.S.; Ahmadian, G.; Vali, H.; Noghabi, K.A. Structural Characterization of a Rhamnolipid-Type Biosurfactant Produced by Pseudomonas aeruginosa MR01: Enhancement of Di-Rhamnolipid Proportion Using Gamma Irradiation. Colloids Surf. B Biointerfaces 2010, 81(2), 397–405.
  • Lotfabad, T.B.; Shourian, M.; Roostaazad, R.; Najafabadi, A.R.; Adelzadeh, M.R.; Noghabi, K.A. An Efficient Biosurfactant-Producing Bacterium Pseudomonas aeruginosa MR01, Isolated From Oil Excavation Areas in South of Iran. Colloids Surf. B Biointerfaces 2009, 69(2), 183–193.
  • Wei, Y.-H.; Chou, C.-L.; Chang, J.-S. Rhamnolipid Production by Indigenous Pseudomonas aeruginosa J4 originating From Petrochemical Wastewater. Biochem. Eng. J. 2005, 27(2), 146–154.
  • Müller, M.M.; Hörmann, B.; Kugel, M.; Syldatk, C.; Hausmann, R. Evaluation of Rhamnolipid Production Capacity of Pseudomonas aeruginosa PAO1 in Comparison to the Rhamnolipid Over-Producer Strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol. 2011, 89(3), 585–592.
  • Cooper, D.G.; Goldenberg, B.G. Surface-Active Agents From Two Bacillus Species. Appl. Environ. Microbiol. 1987, 53(2), 224–229.
  • Partovi, M.; Lotfabad, T.B.; Roostaazad, R.; Bahmaei, M.; Tayyebi, S. Management of Soybean Oil Refinery Wastes Through Recycling Them for Producing Biosurfactant Using Pseudomonas aeruginosa MR01. World J. Microbiol. Biotechnol. 2013, 29(6), 1039–1047.
  • Li, A.; Xu, M.; Sun, W.; Sun, G. Rhamnolipid Production by Pseudomonas aeruginosa GIM 32 Using Different Substrates Including Molasses Distillery Wastewater. Appl. Biochem. Biotechnol. 2011, 163(5), 600–611.
  • Abalos, A.; Maximo, F.; Manresa, M.A.; Bastida, J. Utilization of Response Surface Methodology to Optimize the Culture Media for the Production of Rhamnolipids by Pseudomonas aeruginosa AT10. J. Chem. Technol. Biotechnol. 2002, 77(7), 777–784.
  • Deyhimi, F.; Salamat-Ahangari, R.; Arabieh, M.; Parvin, L. Application of Response Surface Methodology for Modelling the Enzymatic Assay of Hydrogen Peroxide by Emerson–Trinder Reaction Using 4-Iodophenol. Int. J. Environ. Anal. Chem. 2006, 86(15), 1151–1163.
  • Dusane, D.H.; Zinjarde, S.S.; Venugopalan, V.P.; McLean, R.J.C.; Weber, M.M.; Rahman, P.K.S.M. Quorum Sensing: Implications on Rhamnolipid Biosurfactant Production. Biotechnol. Genet. Eng. Rev. 2010, 27, 159–184.
  • Nalini, S.; Parthasarathi, R. Biosurfactant Production by Serratia rubidaea SNAU02 Isolated From Hydrocarbon Contaminated Soil and Its Physico-Chemical Characterization. Bioresource Technol. 2013, 147, 619–622.
  • de Sousa, J.R.; da Costa Correia, J.A.; de Almeida, J.G.L.; Rodrigues, S.; Pessoa, O.D.L.; Melo, V.M.M.; Gonçalves, L.R.B. Evaluation of a Co-Product of Biodiesel Production as Carbon Source in the Production of Biosurfactant by P. aeruginosa MSIC02. Process Biochem. 2011, 46(9), 1831–1839.
  • Wu, J.-Y.; Yeh, K.-L.; Lu, W.-B.; Lin, C.-L.; Chang, J.-S. Rhamnolipid Production With Indigenous Pseudomonas aeruginosa EM1 Isolated From Oil-Contaminated Site. Bioresource Technol. 2008, 99(5), 1157–1164.
  • Silva, S.N.R.L.; Farias, C.B.B.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Glycerol as Substrate for the Production of Biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces, 2010, 79(1), 174–183.
  • Lotfabad, T.B.; Tayyebi, S.; Roostaazad, R. Kinetic Measurements for Pseudomonas aeruginosa MR01 During Biosurfactant Production in Two-Phase System and Developing a Double-Exponential Model for Viable Cell Profile. World Appl. Sci. J. 2013, 22(6), 809–816.
  • Nitschke, M.; Costa, S.G.V.A.O.; J. Contiero, J. Structure and Applications of a Rhamnolipid Surfactant Produced in Soybean Oil Waste. Appl. Biochem. Biotechnol. 2010, 160(7), 2066–2074.
  • Lima, C.J.B.; Ribeiro, E.J.; Sérvulo, E.F.C.; Resende, M.M.; Cardoso, V.L. Biosurfactant Production by Pseudomonas aeruginosa Grown in Residual Soybean Oil. Appl. Biochem. Biotechnol. 2008, 152(1), 156–168.
  • Pereira, F.B.; Guimarães, P.M.R.; Teixeira, J.A.; Domingues, L. Optimization of Low-Cost Medium for Very High Gravity Ethanol Fermentations by Saccharomyces cerevisiae Using Statistical Experimental Designs. Bioresource Technol. 2010, 101(20), 7856–7863.
  • Stanbury, P.F.; Whitaker, A.; Hall, S.J. Principles of Fermentation Technology, 2nd ed. Pergamon: Oxford, UK, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.