418
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates

References

  • Harada, T.; Misaki, A.; Saito, H. Curdlan: A Bacterial Gel-Forming β-1,3-Glucan. Arch. Biochem. Biophys. 1968, 124(1), 292–298.
  • Phillips, K.R.; Lawford, H.G. Curdlan: Its Properties and Production in Batch and Continuous Fermentations. In Progress in Industrial Microbiology, vol. 18: Microbial Polysaccharides. Bushell, M.E. Ed.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 201–229.
  • Nakao, Y.; Konno, A.; Taguchi, T.; Tawada, T.; Kasai, H.; Toda, J.; Terasaki, T. Curdlan: Properties and Applications to Foods. J. Food Sci. 1991, 56(3), 769–772, 776.
  • Kanke, M.; Koda, K.; Koda, Y.; Katayama, H. Application of Curdlan to Controlled Drug Delivery. I. The Preparation and Evaluation of Theophylline-Containing Curdlan Tablets. Pharm. Res. 1992, 9(3), 414–418.
  • Jezequel, V. Curdlan: A New Functional β-Glucan. Cereal Foods World 1998, 43(5), 361–364.
  • Spicer, E.F.J.; Goldenthal, E.I.; Ikeda, T. A Toxicological Assessment of Curdlan. Food Chem. Toxicol. 1999, 37(4), 455–479.
  • Zhan, X.B.; Lin, C.C.; Zhang, H.T. Recent Advances in Curdlan Biosynthesis, Biotechnological Production, and Applications. Appl. Microbiol. Biotechnol. 2012, 93(2), 525–553.
  • Phillips, K.R.; Lawford, H.G. Theoretical Maximum and Observed Product Yields Associated With Curdlan Production by Alcaligenes faecalis. Can. J. Microbiol. 1983, 29(10), 1270–1276.
  • Lawford, H.G.; Rousseau, J.D. Production of β-1,3-Glucan Exopolysaccharide in Low Shear Systems: The Requirement for High Oxygen Tension. Appl. Biochem. Biotechnol. 1992, 34/35(1), 597–612.
  • Lee, I.Y. Curdlan. In Polysaccharides I: Polysaccharides from Prokaryotes. Vandamme, E.J.; De Baets, S.; Steinbüchel, A. Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 135–158.
  • Wu, J.R.; Yu, L.J.; Zhan, X.B.; Zheng, Z.Y.; Lu, J.; Lin, C.C. NtrC-Dependent Regulatory Network for Curdlan Biosynthesis in Response to Nitrogen Limitation in Agrobacterium sp. ATCC 31749. Process Biochem. 2012, 47(11), 1552–1558.
  • Jiang, L. Effect of Nitrogen Source on Curdlan Production by Alcaligenes faecalis ATCC 31749. Int. J. Biol. Macromol. 2013, 52(1), 218–220.
  • Kim, M.K.; Lee, I.Y.; Ko, J.H.; Rhee, Y.H.; Park, Y.H. Higher Intracellular Levels of Uridine Monophosphate under Nitrogen-limited Conditions Enhance Metabolic Flux of Curdlan Synthesis in Agrobacterium species. Biotechnol. Bioeng. 1999, 62(3), 317–323.
  • Karnezis, T.; Fisher, H.C.; Neumann, G.M., Stone, B.A.; Stanisich, V.A. Cloning and Characterization of the Phosphatidylserine Synthase Gene of Agrobacterium sp. ATCC 31749 and Effect of Its Inactivation on Production of High-Molecular-Mass (1→3)-β-D-Glucan (Curdlan). J. Bacteriol. 2002, 184(15), 4114–4123.
  • West, T.P. Pyrimidine Base Supplementation Affects Curdlan Production by Agrobacterium sp. ATCC 31749. J. Basic Microbiol. 2006, 46(2), 153–157.
  • Zhang, H.T.; Zhan, X.B.; Zheng, Y.Z.; Wu, J.R.; English, N.; Yu, X.B.; Lin, C.C. Improved Curdlan Fermentation Process Based on Optimization of Dissolved Oxygen Combined with pH Control and Metabolic Characterization of Agrobacterium sp. ATCC 31749. Appl. Microbiol. Biotechnol. 2012, 93(1), 367–379.
  • Portilho, M.; Matioli, G.; Zanin, G.; de Moraes, F.F.; Scamparini, A.R. Production of Insoluble Exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140). Appl. Biochem. Biotechnol. 2006, 129–132(1), 864–869.
  • West, T.P.; Nemmers, B. Curdlan Production by Agrobacterium sp. ATCC 31749 on an Ethanol Fermentation Coproduct. J. Basic Microbiol. 2008, 48(1), 65–68.
  • West, T.P. Elevated Curdlan Production by a Mutant of Agrobacterium sp. ATCC 31749. J. Basic Microbiol. 2009, 49(6), 589–592.
  • Kim, M.K.; Lee, I.Y.; Lee, J.H.; Kim, K.T.; Rhee, Y.H.; Park, Y.H. Residual Phosphate Concentration Under Nitrogen-Limiting Conditions Regulates Curdlan Production in Agrobacterium species. J. Ind. Microbiol. Biotechnol. 2000, 25(4), 180–183.
  • Zhang, Y.-H.P. Reviving the Carbohydrate Economy via Multi-Product Lignocellulose Biorefineries. J. Ind. Microbiol. Biotechnol. 2008, 35(5), 367–375.
  • Gonzalez-Hernandez, J.L.; Sarath, G.; Stein, J.M.; Owens, V.; Gedye, K.; Boe, A. A Multiple Species Approach to Biomass Production From Native Herbaceous Perennial Feedstocks. In Vitro Cell. Dev. Biol. Plant 2009, 45(3), 267–281.
  • Boe, A.; Lee, D.K. Genetic Variation for Biomass Production in Prairie Cordgrass. Crop Sci. 2007, 47(3), 929–934.
  • Zheng, Y.; Pan, Z.; Zhang, R.; Labavitch, J.M.; Wang, D.; Teter, S.A.; Jenkins, B.M. Evaluation of Different Biomass Materials as Feedstock for Fermentable Sugar Production. Appl. Biochem. Biotechnol. 2007, 136–140(1–12), 423–435.
  • Bondar, R.J.L.; Mead, D.C. Evaluation of Glucose-6-phosphate Dehydrogenase from Leuconostoc mesenteroides in the Hexokinase Method for Determining Glucose in Serum. Clin. Chem. 1974, 20(5), 586–590.
  • Harada, T., Fujimori, F., Hirose, S., and Masada, M. Growth and β-Glucan 10C3 K Production by a Mutant of Alcaligenes faecalis var. myxogenes in Defined Medium. Agric. Biol. Chem. 1966, 30(8), 764–769.
  • West, T.P.; Peterson, J.L. Production of the Polysaccharide Curdlan by an Agrobacterium Strain Grown on a Plant Biomass Hydrolysate. Can. J. Microbiol. 2014, 60(1), 53–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.