267
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Separation and analysis of charged isomers of monoclonal immunoglobulin G by ceramic hydroxyapatite chromatography

, &

References

  • Jefferis, R. The Glycosylation of Antibody Molecules: Functional Significance. Glycoconj. J. 1993, 10, 358–361.
  • Jefferis, R. Glycosylation of Recombinant Antibody Therapeutics. Biotechnol. Prog. 2005, 21, 11–16.
  • Fujimura, Y.; Tachibana, H.; Eto, N.; Yamada, K. Antigen Binding of an Ovomucoid-Specific Antibody Is Affected by a Carbohydrate Chain Located on the Light Chain Variable Region. Biosci. Biotechnol. Biochem. 2000, 64, 2298–2305.
  • Kanda, Y.; Yamada, T.; Mori, K.; Okazaki, A.; Inoue, M.; Kitajima-Miyama, K.; Kuni-Kamochi, R.; Nakano, R.; Yano, K.; Kakita, S.; Shitara, K.; Satoh, M. Comparison of Biological Activity Among Nonfucosylated Therapeutic IgG1 Antibodies With Three Different N-Linked Fc Oligosaccharides: The High-Mannose, Hybrid, and Complex Types. Glycobiology 2007, 17, 104–118.
  • Jefferis, R. Isotype and Glycoform Selection for Antibody Therapeutics. Arch. Biochem. Biophys. 2012, 526, 159–166.
  • Ruhaak, L.R.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A.M.; Wuhrer, M. Glycan Labeling Strategies and Their Use in Identification and Quantification. Anal. Bioanal. Chem. 2010, 397, 3457–3481.
  • Vlasak, J.; Ionescu, R. Heterogeneity of Monoclonal Antibodies Revealed by Charge-Sensitive Methods. Curr. Pharm. Biotechnol. 2008, 9, 468–481.
  • St. Amand, M.M.; Ogunnaike, B.A.; Robinson, A.S. Development of At-Line Assay to Monitor Charge Variants of MAbs During Production. Biotechnol. Prog. 2014, 30, 249–255.
  • Perkins, M.; Theiler, R.; Lunte, S.; Jeschke, M. Determination of the Origin of Charge Heterogeneity in a Murine Monoclonal Antibody. Pharm. Res. 2000, 17, 1110–1117.
  • Zhang, W.; Czupryn, M.J. Analysis of Isoaspartate in a Recombinant Monoclonal Antibody and Its Charge Isoforms. J. Pharm. Biomed. Anal. 2003, 30, 1479–1490.
  • Harris, R.J.; Kabakoff, B.; Macchi, F.D.; Shen, F.J.; Kwong, M.; Andya, J.D.; Shire, S.J.; Bjork, N.; Totpal, K.; Chen, A.B. Identification of Multiple Sources of Charge Heterogeneity in a Recombinant Antibody. J. Chromatogr. B Biomed. Sci. Appl. 2001, 752, 233–245.
  • Khawli, L.A.; Goswami, S.; Hutchinson, R.; Kwong, Z.W.; Yang, J.; Wang, X.; Yao, Z.; Sreedhara, A.; Cano, T.; Tesar, D.; Nijem, I.; Allison, D.E.; Wong, P.Y.; Kao, Y.H.; Quan, C.; Joshi, A.; Harris, R.J.; Motchnik, P. Charge Variants in IgG1 Isolation, Characterization, In Vitro Binding Properties and Pharmacokinetics in Rats. MAbs 2010, 2, 613–624.
  • Lyubarskaya, Y.; Houde, D.; Woodard, J.; Murphy, D.; Mhatre, R. Analysis of Recombinant Monoclonal Antibody Isoforms by Electrospray Ionization Mass Spectrometry as a Strategy for Streamlining Characterization of Recombinant Monoclonal Antibody Charge Heterogeneity. Anal. Biochem. 2006, 348, 24–39.
  • Farnan, D.; Moreno, G.T. Multiproduct High-Resolution Monoclonal Antibody Charge Variant Separations by pH Gradient Ion-Exchange Chromatography. Anal. Chem. 2009, 81, 8846–8857.
  • Maeda, E.; Urakami, K.; Shimura, K.; Kinoshita, M.; Kakehi, K. Charge Heterogeneity of a Therapeutic Monoclonal Antibody Conjugated With a Cytotoxic Antitumor Antibiotic, Calicheamicin. J. Chromatogr. A 2010, 1217, 7164–7171.
  • Gagnon, P. Monoclonal Antibody Purification With Hydroxyapatite. N. Biotechnol. 2009, 25, 287–293.
  • Gagnon, P.; Cheung, C.W.; Yazaki, P.J. Cooperative Multimodal Retention of IgG, Fragments, and Aggregates on Hydroxyapatite. J. Separ. Sci. 2009, 32, 3857–3865.
  • Wensel, D.L.; Kelley, B.D.; Coffman, J.L. High-Throughput Screening of Chromatographic Separations III. Monoclonal Antibodies on Ceramic Hydroxyapatite. Biotechnol. Bioeng. 2008, 100, 839–854.
  • Hjerten, S.; Levin, O.; Tiselius, A. Protein Chromatography on Calcium Phosphate Columns. Arch. Biochem. Biophys. 1956, 65, 132–155.
  • Kurosawa, Y.; Saito, M.; Kobayashi, S.; Okuyama, T. Purification of Dengue Virus Particles by One-Step Ceramic Hydroxyapatite Chromatography. World J. Vaccine 2012, 2, 155–160.
  • Saito, M.; Kurosawa, Y.; Okuyama, T. Scanning Electron Microscopy-Based Approach to Understand the Mechanism Underlying the Adhesion of Dengue Viruses on Ceramic Hydroxyapatite Columns. PLoS ONE 2013, 8, e53893.
  • Kobayashi, Y.; Hasegawa, H.; Oyama, T.; Tamai, T.; Kusaba, T. Antigenic Analysis of Japanese Encephalitis Virus by Using Monoclonal Antibodies. Infect. Immun. 1984, 44, 117–123.
  • Casals, J.; Brown, L.V. Hemagglutination With Arthropod-Borne Viruses. J. Exp. Med. 1954, 99, 429–449.
  • Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, W.; Puttikhunt, C.; Edwards, C.; Duangchinda, T.; Supasa, S.; Chawansuntati, K.; Malasit, P.; Mongkolsapaya, J.; Screaton, G. Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science 2010, 328, 745–748.
  • Saito, M.; Kurosawa, Y.; Okuyama, T. Purification of Anti-Japanese Encephalitis Virus Monoclonal Antibody by Ceramic Hydroxyapatite Chromatography Without Proteins a and g. Hybridoma 2012, 31, 68–71.
  • Carr, S.A.; Roberts, G.D. Carbohydrate Mapping by Mass Spectrometry: A Novel Method for Identifying Attachment Sites of Asn-Linked Sugars in Glycoproteins. Anal. Biochem. 1986, 157, 396–406.
  • Karlsson, G.; Winge, S. Separation Between the Alpha and Beta Forms of Human Antithrombin by Hydroxyapatite High-Performance Liquid Chromatography. Protein Expr. Purif. 2003, 28, 196–201.
  • Nakagawa, T.; Ishihara, T.; Yoshida, H.; Yoneya, T.; Wakamatsu, K.; Kadoya, T. Relationship Between Human IgG Structure and Retention Time in Hydroxyapatite Chromatography With Sodium-Phosphate Gradient Elution. J. Separ. Sci. 2010a, 33, 37–45.
  • Nakagawa, T.; Ishihara, T.; Yoshida, H.; Yoneya, T.; Wakamatsu, K.; Kadoya, T. Relationship Between Human IgG Structure and Retention Time in Hydroxyapatite Chromatography With Sodium Chloride Gradient Elution. J. Separ. Sci. 2010b, 33, 2045–2051.
  • Gorbunoff, M.J. The Interaction of Proteins With Hydroxyapatite. I. Role of Protein Charge and Structure. Anal. Biochem. 1984a, 136, 425–432.
  • Gorbunoff, M.J. The Interaction of Proteins With Hydroxyapatite. II. Role of Acidic and Basic Groups. Anal. Biochem. 1984b, 136, 433–439.
  • Gorbunoff, M.J. The Interaction of Proteins With Hydroxyapatite. III. Mechanism. Anal. Biochem. 1984c, 136, 440–445.
  • Jenkins, N. Modifications of Therapeutic Proteins: Challenges and Prospects. Cytotechnology 2007, 53, 121–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.