787
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of anticancer exopolysaccharide production from probiotic Lactobacillus acidophilus by response surface methodology

, , , &

References

  • Anderson, J.W.; Gilliland, S.E. Effect of Fermented Milk (Yogurt) Containing Lactobacillus acidophilus L1 on Serum Cholesterol in Hypercholesterolemic Humans. J Am. Coll. Nutr. 1999, 18(1), 43–50.
  • Deraz, S.F.; Karlsson, E.N.; Khalil, A.A.; Mattiasson, B. Mode of Action of Acidocin D20079, a Bacteriocin Produced by the Potential Probiotic Strain, Lactobacillus acidophilus DSM 20079. J. Ind. Microbial. Biotechnol. 2007, 34(5), 373–379.
  • Holzapfel, W.H.; Haberer, P.; Snel, J.; Schillinger, U.; Huis in't Veld, J.H. Overview of Gut Flora and Probiotics. Int. J. Food Microbiol. 1998, 41(2), 85–101.
  • Wollowski, I.; Rechkemmer, G.; Pool-Zobel, B.L. Protective Role of Probiotics and Prebiotics in Colon Cancer. Am. J. Clin. Nutr. 2001, 73(2), 451s–455s.
  • Badel, S.; Bernardi, T.; Michaud, P. New Perspectives for Lactobacilli Exopolysaccharides. Biotechnol. Adv. 2011, 29(1), 54–66.
  • Liu, C.F.; Tseng, K.C.; Chiang, S.S.; Lee, B.H.; Hsu, W.H.; Pan, T.M. Immunomodulatory and Antioxidant Potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 2011, 91(12), 2284–2291.
  • Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA-Cancer J. Clin. 2011, 61(2), 69–90.
  • Mohandas, K.M. Colorectal Cancer in India: Controversies, Enigmas and Primary Prevention. Ind. J. Gastroenterol. 2011, 30(1), 3–6.
  • Tappel, A. Heme of Consumed Red Meat Can Act as a Catalyst of Oxidative Damage and Could Initiate Colon, Breast and Prostate Cancers, Heart Disease and Other Diseases. Med. Hypoth. 2007, 68(3), 562–564.
  • Brahimi-Horn, M.C.; Chiche, J.; Pouysségur, J. Hypoxia and Cancer. J. Mol. Med. 2007, 85(12), 1301–1307.
  • Deepak, V.; Ilangovan, S.; Sampathkumar, M.V.; Victoria, M.J.; Pasha, S.P.B.S.; Pandian, S.B.R.K.; Gurunathan, S. Medium Optimization and Immobilization of Purified Fibrinolytic URAK From Bacillus cereus NK1 on PHB Nanoparticles. Enzyme Microb. Technol. 2010, 47(6), 297–304.
  • Deswal, A.; Deora, N.S.; Mishra, H.N. Optimization of Enzymatic Production Process of Oat Milk Using Response Surface Methodology. Food Bioprocess Technol. 2014, 7(2), 610–618.
  • RamKumar Pandian, S.; Deepak, V.; Kalishwaralal, K.; Rameshkumar, N.; Jeyaraj, M.; Gurunathan, S. Optimization and Fed-Batch Production of PHB Utilizing Dairy Waste And Sea Water as Nutrient Sources by Bacillus megaterium SRKP-3. Bioresource Technol. 2010, 101(2), 705–711.
  • Chang, C.P.; Liew, S.L. Growth Medium Optimization for Biomass Production of Probiotic Bacterium Lactobacillus rhamnosus ATCC 7469. J. Food Biochem. 2012, 37, 536–543.
  • Nagraj, A.K.; Singhvi, M.; Kumar, V.R.; Gokhale, D. Optimization Studies for Enhancing Cellulase Production by Penicillium janthinellum Mutant EU2D-21 Using Response Surface Methodology. BioResources 2014, 9(2), 1914–1923.
  • Kimmel, S.A.; Roberts, R.F.; Ziegler, G.R. Optimization of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus RR Grown in a Semi Defined Medium. Appl. Environ. Microbiol. 1998, 64, 2659–2664.
  • Pham, P.L.; Dupont, I.; Roy, D.; Lapointe, G.; Cerning, J. Production of Exopolysaccharide by Lactobacillus rhamnosus R and Analysis of Its Enzymatic Degradation During Prolonged Fermentation. Appl. Environ. Microbiol. 2000, 66(6), 2302–2310.
  • Ugun-Klusek, A.; Tamang, A.; Loughna, P.; Billett, E.; Buckley, G.; Sivasubramaniam, S. Reduced Placental Vascular Reactivity to 5-Hydroxytryptamine in Pre-Eclampsia and the Status of 5HT2A Receptors. Vasc. Pharmacol. 2011, 55(5), 157–162.
  • Wang, Y.; Li, C.; Liu, P.; Ahmed, Z.; Xiao, P.; Bai, X. Physical Characterization of Exopolysaccharide Produced by Lactobacillus plantarum KF5 Isolated From Tibet Kefir. Carbohyd. Polym. 2010, 82(3), 895–903.
  • Bremer, P.J.; Geesey, G.G. An Evaluation of Biofilm Development Utilizing Non-Destructive Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Biofouling 1991, 3(2), 89–100.
  • Liu, C.T.; Chu, F.J.; Chou, C.C.; Yu, R.C. Antiproliferative and Anticytotoxic Effects of Cell Fractions and Exopolysaccharides From Lactobacillus casei 01. Mutat. Res. Gen. Tox. En. 2011, 721(2), 157–162.
  • Wang, K.; Li, W.; Rui, X.; Chen, X.; Jiang, M.; Dong, M. Characterization of a Novel Exopolysaccharide With Antitumor Activity From Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 2014, 63, 133–139.
  • Choi, S.S.; Kim, Y.; Han, K.S.; You, S.; Oh, S.; Kim, S.H. Effects of Lactobacillus Strains on Cancer Cell Proliferation and Oxidative Stress In Vitro. Lett. Appl. Microbiol. 2006, 42(5), 452–458.
  • Brockman, J.A.; Gupta, R.A.; DuBois, R.N. Activation of PPARγ Leads to Inhibition of Anchorage-Independent Growth of Human Colorectal Cancer Cells. Gastroenterology 1998, 115(5), 1049–1055.
  • Lehrke, M.; Lazar, M.A. The Many Faces of PPARγ. Cell 2005, 123(6), 993–999.
  • Takahashi, H.; Hosono, K.; Uchiyama, T.; Sugiyama, M.; Sakai, E.; Endo, H.; Maeda, S.; Schaefer, K.L.; Nakagama, H.; Nakajima, A. PPAR γ Ligand as a Promising Candidate for Colorectal Cancer Chemoprevention: A Pilot Study. PPAR Res. 2010, 2010, 1–4.
  • Sarraf, P.; Mueller, E.; Jones, D.; King, F.J.; DeAngelo, D.J.; Partridge, J.B.; Holden, S.A.; Chen, L.B.; Singer, S.; Fletcher, C.; Spiegelman, B.M. Differentiation and Reversal of Malignant Changes in Colon Cancer Through PPAR γ. Nat. Med. 1998, 4(9), 1046–1052.
  • Shimada, T.; Kojima, K.; Yoshiura, K.; Hiraishi, H.; Terano, A. Characteristics of the Peroxisome Proliferator Activated Receptor γ (PPARγ) Ligand Induced Apoptosis in Colon Cancer Cells. Gut 2002, 50(5), 658–664.
  • Li, X.; Kimura, H.; Hirota, K.; Sugimoto, H.; Kimura, N.; Takahashi, N.; Fujii, H.; Yoshida, H. Hypoxia Reduces the Expression and Anti-Inflammatory Effects of Peroxisome Proliferator-Activated Receptor-γ in Human Proximal Renal Tubular Cells. Nephrol. Dialysis Transplant. 2007, 22(4), 1041–1051.
  • Lefebvre, A.M.; Chen, I.; Desreumaux, P.; Najib, J.; Fruchart, J.C.; Geboes, K.; Briggs, M.; Heyman, R.; Auwerx, J. Activation of the Peroxisome Proliferator-Activated Receptor γ Promotes the Development of Colon Tumors in C57BL/6 J-APCMin/+Mice. Nat. Med. 1998, 4(9), 1053–1057.
  • Sarraf, P.; Mueller, E.; Smith, W.M.; Wright, H.M.; Kum, J.B.; Aaltonen, L.A.; de la Chapelle, A.; Spiegelman, B.M.; Eng, C. Loss-of-Function Mutations in PPARγ Associated With Human Colon Cancer. Mol. Cell 1999, 3(6), 799–804.
  • Jaquet, K.; Krause, K.; Tawakol-Khodai, M.; Geidel, S.; Kuck, K.H. Erythropoietin and VEGF Exhibit Equal Angiogenic Potential. Microvasc. Res. 2002, 64(2), 326–333.
  • Lester, R.D.; Jo, M., Campana, W.M.; Gonias, S.L. Erythropoietin Promotes MCF-7 Breast Cancer Cell Migration by an ERK/Mitogen-Activated Protein Kinase-Dependent Pathway and Is Primarily Responsible for the Increase in Migration Observed in Hypoxia. J. Biol. Chem. 2005, 280(47), 39273–39277.
  • Batra, S.; Perelman, N.; Luck, L.R., Shimada, H.; Malik, P. Pediatric Tumor Cells Express Erythropoietin and a Functional Erythropoietin Receptor That Promotes Angiogenesis and Tumor Cell Survival. Lab. Invest. 2003, 83(10), 1477–1487.
  • Kosmadakis, N.; Messaris, E.; Maris, A.; Katsaragakis, S.; Leandros, E.; Konstadoulakis, M.M.; Androulakis, G. Perioperative Erythropoietin Administration in Patients With Gastrointestinal Tract Cancer: Prospective Randomized Double-Blind Study. Ann. Surg. 2003, 237(3), 417.
  • Laugsch, M.; Metzen, E.; Svensson, T.; Depping, R.; Jelkmann, W. Lack of Functional Erythropoietin Receptors of Cancer Cell Lines. Int. J. Cancer 2008, 122(5), 1005–1011.
  • Plackett, R.L.; Burman, J.P. The Design of Optimum Multifactorial Experiments. Biometrika 1946, 37, 305–325.
  • Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers. John Wiley & Sons: New York, NY, 2010.
  • Gamar, L.; Blondeau, K.; Simonet, J.M. Physiological Approach to Extracellular Polysaccharide Production by Lactobacillus rhamnosus strain C83. J. Appl. Microbiol. 1997, 83(3), 281–287.
  • Lin, T.Y.; Chien, M.F.C. Exopolysaccharides Production as Affected by Lactic Acid Bacteria and Fermentation Time. Food Chem. 2007, 100(4), 1419–1423.
  • Shene, C.; Bravo, S. Whey Fermentation by Lactobacillus delbrueckii subsp. bulgaricus for Exopolysaccharide Production in Continuous Culture. Enzyme Microb. Technol. 2007, 40(6), 1578–1584.
  • van Geel-Schutten, G.H.; Flesch, F.; Ten Brink, B.; Smith, M.R.; Dijkhuizen, L. Screening and Characterization of Lactobacillus Strains Producing Large Amounts of Exopolysaccharides. Appl. Microbiol. Biotechnol. 1998, 50(6), 697–703.
  • Liu, R. S.; Tang, Y. J. Tuber melanosporum Fermentation Medium Optimization by Plackett–Burman Design Coupled With Draper–Lin Small Composite Design and Desirability Function. Bioresource Technol. 2010, 101(9), 3139–3146.
  • Wang, Z.W.; Liu, X.L. Medium Optimization for Antifungal Active Substances Production From a Newly Isolated Paenibacillus sp. Using Response Surface Methodology. Bioresource Technol. 2008, 99(17), 8245–8251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.