266
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of the extraction of phenolic compounds from Cyclosorus extensa with solvents of varying polarities

, , , &

References

  • Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23(2), 174–181.
  • Gordon, N.C.; Wareham, D.W. Antimicrobial Activity of the Green Tea Polyphenol (–)-Epigallocatechin-3-gallate (EGCG) Against Clinical Isolates of Stenotrophomonas maltophilia. Int. J. Antimicrob. Agents 2010, 36, 129–131.
  • Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, Antiviral and Antimicrobial Activities of Alkaloids, Flavonoids, and Phenolic Acids. Pharm. Biol. 2011, 49, 396–402.
  • Chen, C.C.; Huang, C.Y. Inhibition of Klebsiella pneumoniae DnaB Helicase by the Flavonol Galangin. Prot. J. 2011, 30(1), 59–65.
  • Yamamoto, H.; Ogawa, T. Antimicrobial Activity of Perilla Seed Polyphenols Against Oral Pathogenic Bacteria. Biosci. Biotechnol. Biochem. 2002, 66(4), 921–921.
  • Saravanan, S.; Parimelazhagan, T. In vitro Antioxidant, Antimicrobial and Anti-diabetic Properties of Polyphenols of Passiflora ligularis Juss. Fruit Pulp. Food Sci. Human Wellness 2014, 3(2), 56–56.
  • Proestos, C.; Boziaris, I.S.; Kapsokefalou, M.; Komaitis, M. Antioxidant Constituents from Aromatic Plants. Food Technol. Biotechnol. 2008, 46(2), 151–151.
  • Radojkovi, M.; Zekovi, Z.; Joki, S.; Vidovi, S.; Lepojevi, Z.; Milosevic, S. Antioxidant Extraction from Black Mulberry Leaf. Food Technol. Biotechnol. 2012, 50(2), 167–167.
  • Pinelo, M.; Rubilar, M.; Jerez, M.; Sinerio, J.; Nuñez, M.J. Effect of Solvent, Temperature and Solvent-to-solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J. Agric. Food Chem. 2005, 53, 2111–2117.
  • Das, A.J.; Deka, S.C.; Miyaji, T. Methodology of Rice Beer Preparation and Various Plant Materials Used in Starter Culture Preparation by Some Tribal Communities of North-East India: A Survey. Int. Food Res. J. 2012, 19(1), 101–101.
  • Das, A.J.; Das, G.; Miyaji, T.; Deka, S.C. In vitro Antioxidant Activity of Polyphenols Purified from Four Different Plant Species Used in the Preparation of Rice Beer in Assam, India. Int. J. Food Prop. 2015. doi:10.1080/10942912.2015.1038835
  • Quadri-Spinelli, T.; Heilmann, J.; Rali, T.; Sticher, O. Bioactive Coumarin Derivatives from the Fern Cyclosorus interruptus. Planta Med. 2000, 66(8), 728–728.
  • Santelli, R.E.; Bezerra, M.A.; Santana, O.D.; Cassella, R.J.; Ferreira, S.L.C. Multivariate Technique for Optimization of Digestion Procedure by Focused Microwave System for Determination of Mn, Zn, and Fe in Food Samples Using FAAS. Talanta 2006, 68, 1083–1088.
  • Myers, R. Response Surface Methodology. Edwards Brothers: Ann Arbor, MI, USA, 1976.
  • Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: New York, NY, USA, 2002; 690–701 pp.
  • Das, A.J.; Seth, D.; Miyaji, T.; Deka, S.C. Fermentation Optimization for a Probiotic Local Northeastern Indian Rice Beer and Application to Local Cassava and Plantain Beer Production. J. Inst. Brew. 2015, 121, 273–282.
  • Khuri, A.I.; Mukhopadhyay, S. Response Surface Methodology. WIREs Comput. Stat. 2010, 2, 128–149.
  • Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: Somerset, NJ, USA, 2012; 730 p.
  • Oehlert, G.W. Design and Analysis of Experiments: Response Surface Design; W.H. Freeman and Company: New York, NY 2000; 600 p.
  • Aslan, N. Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling the Influence of Some Operating Variables of a Multi-gravity Separator for Coal Cleaning. Fuel 2007, 86, 769–776.
  • Spigno, G.; Tramelli, L.; Faveri, D.M.D. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81(1), 200–200.
  • Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Viticult. 1977, 28, 49–55.
  • Brand-Williams, W.; Cuverlier, M.E.; Berset, C. Use of Free Radical Method to Evaluate Antioxidant Activity. LWT – Food Sci. Technol. 1995, 28(1), 25–25.
  • Perez, C.; Paul, M.; Bazerque, P. An Antibiotic Assay by the Agar Well Diffusion Method. Acta. Bio. Med. Exp. 1990, 15, 113–115.
  • Barry, A.L. Procedure for Testing Antimicrobial Agent in Agar Media. In Antibiotica in Laboratory Medicines; Lorian, V., Ed.; Williams and Wilkins Co: Baltimore, MD, 1980; 1–23 pp.
  • Boskou, D. Sources of Natural Antioxidants. Trends Food Sci. Technol. 2006, 17(9), 505–505.
  • Buchowski, H.; Ksiazczak, A.; Pietrzyk S. Solvent Activity along a Saturation Line and Solubility of Hydrogen-bonding Solids. J. Phys. Chem. 1980, 84(9), 975–975.
  • Wang, L.H.; Mei, Y.H.; Yu, L.; Liu, X.S.; Chen, Y. Solubility of Imperatorin in Ethyl Acetate, Ethanol, Methanol, n-Hexane, and Petroleum Ether from (278.2 to 318.2) K. J. Chem. Eng. Data. 2011, 56, 2329–2331.
  • Daneshfar, A.; Ghaziaskar, H.S.; Homayoun, N. Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate. J. Chem. Eng. Data. 2008, 53, 776–778.
  • Galanakisa, C.M.; Goulasc, V.; Gekas, V. Predicting the Solubilization Preference of Natural Phenols to Different Solvents. Int. J. Food Prop. 2013, 16, 382–396.
  • Eklund, P.C.; Langvik, O.K.; Warna, J.P.; Salmi, T.O.; Willfo, S.M.; Sjoholm, R.E. Chemical Studies on Antioxidant Mechanisms and Free Radical Scavenging Properties of Lignans. Org. Biomol. Chem. 2005, 3(18), 3336–3336.
  • Zou, Y.; Lu, Y.; Wei, D. Antioxidant Activity of Flavonoid-rich Extract of Hypericum perforatum L. In Vitro. J. Agric. Food Chem. 2004, 52, 5032–5039.
  • Dutra, R.; Leite, M.; Brbosa, N. Quantification of Phenolic Constituents and Antioxidant Activity of Pterodon emarginatus Vogel Seeds. Int. J. Mol. Sci. 2008, 9, 606–614.
  • Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant Activity of Phenolic Components Present in Barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chem. 2007, 104, 1106–1114.
  • Meyer, A.S.; Heinonen, M.; Frankel, E.N. Antioxidant Interactions of Catechin, Cyaniding, Caffeic Acid, Quercetin and Ellagic Acid on Human LDL Oxidation. Food Chem. 1998, 61, 71–75.
  • Lafka, T.I.; Sinanoglou, V.; Lazos, E.S. On the Extraction and Antioxidant Activity of Phenolic Compounds from Winery Wastes. Food Chem. 2007, 104(3), 1206–1206.
  • Bouterfas, K.; Mehdadi, Z.; Benmansour, D.; Khaled, M.B.; Bouterfas, M.; Latreche, A. Optimization of Extraction Conditions of Some Phenolic Compounds from White Horehound (Marrubium vulgare L.) Leaves. Int. J. Org. Chem. 2014, 4(5), 292–292.
  • Rababah, T.M.; Banat, F.; Rababah, A.; Ereifej, K.; Yang, W. Optimization of Extraction Conditions of Total Phenolics, Antioxidant Activities, and Anthocyanin of Oregano, Thyme, Terebinth, and Pomegranate. J. Food Sci. 2010, 75(7), C626–C632.
  • Singleton, P. Bacteria in Biology, Biotechnology and Medicine, 5th ed.; Wiley: West Sussex, England, 1999; 444–454 pp.
  • Flannigan, B.; Samson, R.A.; Miller, J.D. Microogranisms in Home and Indoor Work Environments; CRC Press: London, 2001; 287–292 pp.
  • Palakawong, C.; Sophanodora, P.; Toivonen, P.; Delaquis, P. Optimized Extraction and Characterization of Antimicrobial Phenolic Compounds from Mangosteen (Garcinia mangostana L.) Cultivation and Processing Waste. J. Sci. Food Agric. 2013; 93: 3792–3800.
  • Shah, A.; Cross, R.F.; Palombo, E.A. Identification of the Antibacterial Component of an Ethanolic Extract of the Australian Medicinal Plant, Eremophila duttonii. Phytother. Res. 2004, 18, 615–618.
  • Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbial. Rev. 1999, 12, 564–582.
  • Bassam, A.; Ghaleb, A.; Dahoob, A.; Naser, J.; Kamel, A. Antibacterial Activities of Some Plant Extracts Utilized in Popular Medicine in Palestine. Turkish J. Biol. 2004, 28, 99–102.
  • Abdullah, E., Raus, R.A.; Jamal, P. Evaluation of Antibacterial Activity of Flowering Plants and Optimization of Process Conditions for the Extraction of Antibacterial Compounds from Spathiphyllum cannifolium Leaves. Afr. J. Biotechnol. 2011, 10(81), 18679–18679.
  • Cai, J.; Xie, S.; Feng, J. Antimicrobial Activities of Nitellopsis obtusa (Desvaux) Groves and Chara vulgaris L. J. Appl. Bot. Food Qual. 2013, 86, 24–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.