233
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Modification with polysialic acid–PEG copolymer as a new method for improving the therapeutic efficacy of proteins

, , , &

References

  • Pisal, D.S.; Kosloski, M.P.; Balu-Iyer, S.V. Delivery of Therapeutic Proteins. J. Pharm. Sci. 2010, 99, 2557–2575.
  • Schlesinger, N.; Yasothan, U.; Kirkpatrick, P. Pegloticase. Nat. Rev. Drug. Discov. 2010, 10, 17–18.
  • Zhang, C.; Fan, K.; Luo, H.; Ma, X.; Liu, R.; Yang, L.; Hu, C.; Chen, Z.; Min, Z.; Wei, D. Characterization, Efficacy, Pharmacokinetics, and Biodistribution of 5 kDa mPEG Modified Tetrameric Canine Uricase Variant. Int. J. Pharm. 2012, 430, 307–317.
  • Veronese, F.M.; Monfardini, C.; Caliceti, P.; Schiavon, O.; Scrawen, M.D.; Beer, D. Improvement of Pharmacokinetic, Immunological and Stability Properties of Asparaginase by Conjugation to Linear and Branched Monomethoxy Poly(ethylene glycol). J. Control. Release 1996, 40, 199–209.
  • Dou, H.; Zhang, M.; Zhang, Y.; Yin, C. Synthesis and Purification of Mono-PEGylated Insulin. Drug. Des. 2007, 69, 132–138.
  • Goodson, R.J.; Katre, N.V. Site-directed PEGylation of Recombinant Interleukin-2 at its Glycosylation Site. Nat. Biotechnol. 1990, 8, 343–346.
  • Lee, L.S.; Conover, C.; Shi, C.; Whitlow, M.; Filpula, D. Prolonged Circulating Lives of Single-chain Fv Proteins Conjugated with Polyethylene Glycol: A Comparison of Conjugation Chemistries and Compounds. Bioconjugate Chem. 1999, 10, 973–981.
  • Ramon, J.; Saez, V.; Baez, R.; Aldana, R.; Hardy, E. PEGylated Interferon-α2b: A Branched 40 K Polyethylene Glycol Derivative. Pharm. Res. 2005, 22, 1375–1387.
  • Vugmeyster, Y.; Entrican, C.A.; Joyce, A.P.; Lawrence-Henderson, R.F.; Leary, B.A.; Mahoney, C.S.; Patel, H.K.; Raso, S.W.; Olland, S.H.; Hegen, M.; Xu, X. Pharmacokinetic, Biodistribution, and Biophysical Profiles of TNF Nanobodies Conjugated to Linear or Branched Poly(ethylene glycol). Bioconjugate Chem. 2012, 23, 1452–1462.
  • An, Q.; Lei, Y.; Jia, N.; Zhang, X.; Bai, Y.; Yi, J.; Chen, R.; Xia, A.; Yang, J.; Wei, S.; Cheng, X.; Fan, A.; Mu, S.; Xu, Z. Effect of Site-directed PEGylation of Trichosanthin on its Biological Activity, Immunogenicity, and Pharmacokinetics. Biomol. Eng. 2007, 24, 643–649.
  • Sivaramakrishnan, M.; Kashyap, A.S.; Amrein, B.; Saenger, S.; Meier, S.; Staudenmaier, C.; Upton, Z.; Metzger, F. PEGylation of Lysine Residues Reduces the Pro-migratory Activity of IGF-I. Biochim. Biophys. Acta 2013, 1830, 4734–4742.
  • Środa, K.; Rydlewski, J.; Langner, M.; Kozubek, A.; Grzybek, M.; Sikorski, A.F. Repeated Injections of PEG–PE Liposomes Generate Anti-PEG Antibodies. Cell Mol. Biol. Lett. 2005, 10, 37–47.
  • Garay, R.P.; El-Gewely R.; Armstrong, J.K.; Garratty, G.; Pascal Richette, P. Antibodies against Polyethylene Glycol in Healthy Subjects and in Patients Treated with PEG-conjugated Agents. Expert. Opin. Drug Deliv. 2012, 9, 1319–1323.
  • Schellekens, H.; Hennink, W.E.; Brinks, V. The Immunogenicity of Polyethylene Glycol: Facts and Fiction. Pharm. Res. 2013, 30, 1729–1734.
  • Krishna, M.; Palme, H.; Duo, J.; Lin, Z.; Corbett, M.; Dodge, R.; Piccoli, S.; Myler, H.; Pillutla, R.; Desilva, B. Development and Characterization of Antibody Reagents to Assess Anti-PEG IgG Antibodies in Clinical Samples. Bioanalysis 2015, 7, 1869–1883.
  • Zheng, Z.Y.; Wang, S.Z.; Li G.S.; Zhan, X.B.; Lin, C.C.; Wu, J.R.; Zhu, L. A New Polysialic Acid Production Process Based on Dual-stage pH Control and Fed-batch Fermentation for Higher Yield and Resulting High Molecular Weight Product. Appl. Microbiol. Biotechnol. 2013, 97, 2405–2412.
  • Zhan, X.B.; Zhu, L.; Wu, J.R.; Zheng, Z.Y.; Jia, W. Production of Polysialic Acid from Fed-batch Fermentation with pH Control. Biochem. Eng. J. 2002, 11, 2001–2004.
  • Wu, J.R.; Lin, Y.; Zheng, Z.Y.; Zhan, X.B.; Lin, C.C.; Shen, Y.Q. Improvement of the CuZn-superoxide Dismutase Enzyme Activity and Stability as a Therapeutic Agent by Modification with Polysialic Acids. Biotechnol. Lett. 2010, 32, 1939–1945.
  • Wu, J.R.; Liu, J.L.; Zhan, X.B.; Lin, C.C.; Zhao, H. Enhancement of Polysialic Acid Yield by Reducing Initial Phosphate and Feeding Ammonia Water to Escherichia coli CCTCC M208088. Biotechnol. Bioprocess Eng. 2010, 15, 657–663.
  • Zhang, T.; She, Z.; Huang, Z.; Li, J.; Luo, X.; Deng, Y. Application of Sialic Acid/Polysialic Acid in the Drug Delivery Systems. Asian J. Pharm. Sci. 2014, 9, 75–81.
  • Fernandes, A.I.; Gregoriadis, G. Synthesis, Characterization and Properties of Sialylated Catalase. Biochim. Biophys. Acta 1996, 1293, 90–96.
  • Fernandes, A.I.; Gregoriadis, G. Polysialylated Asparaginase: Preparation, Activity and Pharmacokinetics. Biochim. Biophys. Acta 1997, 1341, 26–34.
  • Fernandes, A.I.; Gregoriadis, G. The Effect of Polysialylation on the Immunogenicity and Antigenicity of Asparaginase: Implication in its Pharmacokinetics. Int. J. Pharm. 2001, 217, 215–224.
  • Jain, S.; Hreczuk-Hirst, D.H.; McCormack, B.; Mital, M.; Epenetos, A.; Laing, P.; Gregoriadis, G. Polysialylated Insulin: Synthesis, Characterization and Biological Activity in vivo. Biochim. Biophys. Acta 2003, 1622, 42–49.
  • Ilyushin, D.G.; Smirnov, I.V.; Belogurov, A.A.; Dyachenko Jr. I.A.; Zharmukhamedova, T.Iu.; Novozhilova, T.I.; Bychikhin, E.A.; Serebryakova, M.V.; Kharybin, O.N.; Murashev, A.N.; Anikienko, K.A.; Nikolaev, E.N.; Ponomarenko, N.A.; Genkin, D.D.; Blackburn, G.M.; Masson, P.; Gabibov, A.G. Chemical Polysialylation of Human Recombinant Butyrylcholinesterase Delivers a Long-acting Bioscavenger for Nerve Agents in vivo. Proc. Natl. Acad. Sci. 2013, 110, 1243–1248.
  • Xu, Y.; Shen, Y.; Xiong, Y.; Li, C.; Sun, C.; Ouahab, A.; Tu, J. Synthesis, Characterization, Biodegradability and Biocompatibility of a Temperature-sensitive PBLA–PEG–PBLA Hydrogel as Protein Delivery System with Low Critical Gelation Concentration. Drug Dev. Ind. Pharm. 2014, 40, 1264–1275.
  • Wu, H.; Zhu, L.; Torchilin, V.P. pH-sensitive Poly(histidine)–PEG/DSPE–PEG Co-polymer Micelles for Cytosolic Drug Delivery. Biomaterials 2013, 34, 1213–1222.
  • Akbarzadeh, A.; Mikaeili, H.; Zarghami, N.; Mohammad, R.; Barkhordari, A.; Davaran, S. Preparation and in vitro Evaluation of Doxorubicin-loaded Fe3O4 Magnetic Nanoparticles Modified with Biocompatible Copolymers. Int. J. Nanomedicine 2012, 7, 511–526.
  • Jain, A.K.; Goyal, A.K.; Gupta, P.N.; Khatri, K.; Mishra, N.; Mehta, A.; Mangal, S.; Vyas S.P. Synthesis, Characterization and Evaluation of Novel Triblock Copolymer Based Nanoparticles for Vaccine Delivery Against Hepatitis B. J. Control. Release 2009, 136, 161–169.
  • Wu, Q.J.; Gong, C.Y.; Shi, S.; Wang, Y.J.; Huang, M.J.; Yang, L.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Mannan Loaded Biodegradable and Injectable Thermosensitive PCL–PEG–PCL Hydrogel for Vaccine Delivery. Soft Materials 2012, 10, 472–486.
  • Jain, S.; Papaioannou, I.; Thobhani, S. Activated Sialic Acid Derivatives for Protein Derivatisation and Conjugation. WO Patent 2006, 2006090119A1.
  • Ellman, G.L.; Courtney, K.D.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharm. 1961, 7, 88–95.
  • Svennerholm, L. Quantitative Estimation of Sialic Acids. Biochim. Biophys. Acta 1957, 24, 604–611.
  • Skoog, B. Determination of Polyethylene Glycols 4000 and 6000 in Plasma Protein Preparations. Vox Sang. 1979, 37, 345–349.
  • Brown, R.E.; Jarvis, K.L.; Hyland, K.J. Protein Measurement Using Bicinchoninic Acid: Elimination of Interfering Substances. Anal. Biochem. 1989, 180, 136–139.
  • Snyder, S.L.; Sobocinski, P.Z. An Improved 2,4,6-Trinitrobenzenesulfonic Acid Method for the Determination of Amines. Anal. Biochem. 1975, 64, 284–288.
  • Tian, H.; Guo, Y.; Gao, X.; Yao, W. PEGylation Enhancement of pH Stability of Uricase Via Inhibitive Tetramer Dissociation. J. Pharm. Pharmacol. 2012, 65, 53–63.
  • Daniel, R.M.; Dines, M.; Petach, H.H. The Denaturation and Degradation of Stable Enzymes at High Temperatures. Biochem. J. 1996, 317, 1–11.
  • Soares, A.L.; Guimarães, G.M.; Polakiewicz, B.; de Moraes Pitombo, R.N.; Abrahão-Neto, J. Effects of Polyethylene Glycol Attachment on Physicochemical and Biological Stability of E. coli L-asparaginase. Int. J. Pharm. 2002, 237, 163–170.
  • Zhang, Y.; Lee, Y.C. Acid-catalyzed Lactonization of α2,8-Linked Oligo/Polysialic Acids Studied by High Performance Anion-exchange Chromatography. J. Biol. Chem. 1999, 274, 6183–6189.
  • da Silva Freitas, D.; Spencer, P.J.; Vassão, R.C.; Abrahão-Neto, J. Biochemical and Biopharmaceutical Properties of PEGylated Uricase. Int. J. Pharm. 2010, 387, 215–222.
  • Simone, E.A.; Dziubla, T.D.; Arguiri, E.; Vardon, V.; Shuvaev, V.V.; Christofidou-Solomidou, M.; Muzykantov, V.R. Loading PEG-catalase into Filamentous and Spherical Polymer Nanocarriers. Pharm. Res. 2009, 26, 250–260.
  • Mao, S.; Neu, M.; Germershaus, O.; Merkel, O.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Influence of Polyethylene Glycol Chain Length on the Physicochemical and Biological Properties of Poly(ethylene imine)-graft-poly(ethylene glycol) Block Copolymer/SiRNA Polyplexes. Bioconjugate Chem. 2006, 17, 1209–1218.
  • de la Fuente, M.; Raviña, M.; Sousa-Herves, A.; Correa, J.; Riguera, R.; Fernandez-Megia, E.; Sánchez, A.; Alonso, M.J. Exploring the Efficiency of Gallic Acid-based Dendrimers and Their Block Copolymers with PEG as Gene Carriers. Nanomedicine (Lond) 2012, 7, 1667–1681.
  • Lai, T.Z.; Kataoka, K.; Kwon, G.S. Pluronic-based Cationic Block Copolymer for Forming pDNA Polyplexes with Enhanced Cellular Uptake and Improved Transfection Efficiency. Biomaterials 2011, 32, 4594–4603.
  • Chen, C.K.; Jones, C.H.; Mistriotis, P.; Yu, Y.; Ma, X.; Ravikrishnan, A.; Jiang, M.; Andreadis, S.T.; Pfeifer, B.A.; Cheng, C. Poly(ethylene glycol)-block-cationic Polylactide Nanocomplexes of Differing Charge Density for Gene Delivery. Biomaterials 2013, 34, 9688–9699.
  • Kelly, S.J.; Delnomdedieu, M.; Oliverio, M.I.; Williams, L.D.; Saifer, M.G.; Sherman, M.R.; Coffman, T.M.; Johnson, G.A.; Hershfield, M.S. Diabetes Insipidus in Uricase-deficient Mice: A Model for Evaluating Therapy with Poly(ethylene glycol)-modified Uricase. J. Am. Soc. Nephrol. 2001, 12, 1001–1009.
  • Jeong, B.; Bae, Y.H.; Lee, D.S.; Kim, S.W. Biodegradable Block Copolymers as Injectable Drug-delivery Systems. Nature 1997, 388, 860–862.
  • Zentner, G.M.; Rathi, R.; Shih, C.; McRea, J.C.; Seo, M.H.; Oh, H.; Rhee, B.G.; Mestecky, J.; Moldoveanu, Z.; Morgan, M.; Weitman, S. Biodegradable Block Copolymers for Delivery of Proteins and Water-insoluble Drugs. J. Control. Release 2001, 72, 203–215.
  • Qiao, M.; Chen, D.; Ma, X.; Liu, Y. Injectable Biodegradable Temperature-responsive PLGA–PEG–PLGA Copolymers: Synthesis and Effect of Copolymer Composition on the Drug Release from the Copolymer-based Hydrogels. Int. J. Pharm. 2005, 294, 103–112.
  • Colley, K.J.; Kitajima, K.; Sato, C. Polysialic Acid: Biosynthesis, Novel Functions and Applications. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 498–532.
  • Johnson, C.P.; Fujimoto, I.; Rutishauser, U.; Leckband, D.E. Direct Evidence that Neural Cell Adhesion Molecule (NCAM) Polysialylation Increases Intermembrane Repulsion and Abrogates Adhesion. J. Biol. Chem. 2005, 280, 137–145.
  • Harris, J.M.; Martin, N.E.; Modi, M. Pegylation: A Novel Process for Modifying Pharmacokinetics. Clin. Pharmacokinet. 2001, 40, 539–551.
  • Sherman, M.R.; Saifer, M.G.; Perez-Ruiz, F. PEG-uricase in the Management of Treatment-resistant Gout and Hyperuricemia. Adv. Drug. Deliv. Rev. 2008, 60, 59–68.
  • Bomalaski, J.S.; Holtsberg, F.W.; Ensor, C.M.; Clark, M.A. Uricase Formulated with Polyethylene Glycol (Uricase–PEG 20): Biochemical Rationale and Preclinical Studies. J. Rheumatol. 2002, 29, 1942–1949.
  • Zhang, C.; Yang, X.; Feng, J.; Yuan, Y.; Li, X.; Bu, Y.; Xie, Y.; Yuan, H.; Liao, F. Effects of Modification of Amino Groups with Poly(ethylene glycol) on a Recombinant Uricase from Bacillus fastidiosus. Biosci. Biotechnol. Biochem. 2010, 74, 1298–1301.
  • Caliceti, P.; Schiavon, O.; Veronese, F.M. Immunological Properties of Uricase Conjugated to Neutral Soluble Polymers. Bioconjugate Chem. 2001, 12, 515–522.
  • Veronese, F.M. PEGylated Protein Drugs: Basic Science and Clinical Application; Basel, Switzerland, Birkhauser Verlag AG, 2005; 154–155.
  • Zhang, L.M.; Lu, Z.X.; Bai, Y.Y.; Wang, T.; Wang, Z.F.; Chen, J.; Ding, Y.; Yang, F.; Xiao, Z.D.; Ju, S.H.; Zhu, J.J.; He, N.Y. PEGylated denatured Bovine Serum Albumin Modified Water-soluble Inorganic Nanocrystals as Multifunctional Drug Delivery Platforms. J. Mater. Chem. B 2013, 1, 1289–1295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.