167
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions

, , &

References

  • Greenwell, H.C.; Laurens, L.M.L.; Shields, R.J.; Lovitt, R.W.; Flynn, K.J. Placing Microalgae on the Biofuels Priority List: A Review of the Technological Challenges. J. R. Soc. Interface. 2010, 7(46), 703–726.
  • Ahmad, I.; Fatma, Z.; Yazdani, S.S.; Kumar, S. DNA Barcode and Lipid Analysis of New Marine Algae Potential for Biofuel. Algal Res. 2013, 2(1), 10–15.
  • Fernandes, B.; Teixeira, J.; Dragone, G.; Vicente, A.A.; Kawano, S.; Bisova, K.; Pribyl, P.; Zachleder, V.; Vitova, M. Relationship Between Starch and Lipid Accumulation Induced by Nutrient Depletion and Replenishment in the Microalga Parachlorella kessleri. Bioresour. Technol. 2013, 144, 268–274.
  • Li, X.; Pribyl, P.; Bisova, K.; Kawano, S.; Cepak, V.; Zachleder, V.; Cizzkova, M.; Branyikova, I.; Vitova, M. The Microalga Parachlorella kessleri––A Novel Highly Efficient Lipid Producer. Biotechnol. Bioeng. 2013, 110(1), 97–107.
  • Mahdavi, H.; Liu, Y.; Ulrich, A.C. Partitioning and Bioaccumulation of Metals from Oil Sands Process Affected Water in Indigenous Parachlorella kessleri. Chemosphere 2013, 90, 1893–1899.
  • Amin, S. Review on Biofuel Oil and Gas Production Processes from Microalgae. Energy Convers. Manage. 2009, 50(7), 1834–1840.
  • Dong, H.P.; Williams, E.; Wang, D.Z.; Xie, Z.X.; Hsia, R.C.; Jenck, A.; Halden, R.; Chen, F.; Place, A.R. Responses of Nannochloropsis oceanica IMET1 to Long-term Nitrogen Starvation and Recovery. Plant Physiol. 2013, 162(2), 1110–1126.
  • Sharma, R.; Singh, G.P.; Sharma, V.K. Effects of Culture Conditions on Growth and Biochemical Profile of Chlorella vulgaris. J. Plant Pathol. Microbiol. 2012, 3, 131. doi:10.4172/2157-7471.1000131
  • Fischer, B.B.; Wiesendanger, M.; Eggen, R.I. Growth Condition-dependent Sensitivity, Photodamage and Stress Response of Chlamydomonas reinhardtii Exposed to High Light Conditions. Plant Cell Physiol. 2006, 47(8), 1135–1145.
  • Park, S.; Lee, Y.; Jin, E. Comparison of the Responses of Two Dunaliella Strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to Light Intensity with Special Emphasis on Carotenogenesis. Algae 2013, 28(2), 203–211.
  • Zhang, Y.M.; Chen, H.; He, C.L.; Wang, Q. Nitrogen Starvation Induced Oxidative Stress in an Oil-producing Green Alga Chlorella sorokiniana C3. PloS One 2013, 8(7), e69225.
  • del Pilar Bremauntz, M.; Torres-Bustillos, L.G.; Canizares-Villanueva, R.O.; Duran-Paramo, E.; Fernandez-Linares, L. Trehalose and Sucrose Osmolytes Accumulated by Algae as Potential Raw Material for Bioethanol. Nat. Resour. 2011, 2(3), 173–179.
  • Hema, R.; Senthil-Kumar, M.; Shivakumar, S.; Reddy, P.C.; Udayakumar, M. Chlamydomonas reinhardtii, A Model System for Functional Validation of Abiotic Stress Responsive Genes. Planta 2007, 226(3), 655–670.
  • Takaichi, S. Carotenoids in Algae: Distributions, Biosyntheses and Functions. Mar. Drugs 2011, 9(6), 1101–1118.
  • Miranda, J.A.; Avonce, N.; Suarez, R.; Thevelein, J.M.; van Dijck, P.; Iturriaga, G. A Bifunctional TPS–TPP Enzyme from Yeast Confers Tolerance to Multiple and Extreme Abiotic-stress Conditions in Transgenic Arabidopsis. Planta 2007, 226(6), 1411–1421.
  • Soto, T.; Fernandez, J.; Vicente-Soler, J.; Cansado, J.; Gacto, M. Accumulation of Trehalose by Overexpression of tps1, Coding for Trehalose-6-phosphate Synthase, Causes Increased Resistance to Multiple Stresses in the Fission Yeast Schizosaccharomyces pombe. Appl. Environ. Microbiol. 1999, 65(5), 2020–2024.
  • Pellny, T.K.; Ghannoum, O.; Conroy, J.P.; Schluepmann, H.; Smeekens, S.; Andralojc, J.; Krause, K.P.; Goddijn, O.; Paul, M.J. Genetic Modification of Photosynthesis with E. coli Genes for Trehalose Synthesis. Plant Biotechnol. J. 2004, 2(1), 71–82.
  • Park, E.J.; Jeknic, Z.; Sakamoto, A.; deNoma, J.; Yuwansiri, R.; Murata, N.; Chen, T.H. Genetic Engineering of Glycinebetaine Synthesis in Tomato Protects Seeds, Plants, and Flowers from Chilling Damage. Plant J. 2004, 40(4), 474–487.
  • Sakamoto, A.; Murata, N. Genetic Engineering of Glycinebetaine Synthesis in Plants: Current Status and Implications for Enhancement of Stress Tolerance. J. Exp. Bot. 2000, 51(342), 81–88.
  • Deshnium, P.; Los, D.A.; Hayashi, H.; Mustardy, L.; Murata, N. Transformation of Synechococcus with a Gene for choline Oxidase Enhances Tolerance to Salt Stress. Plant Mol. Biol. 1995, 29(5), 897–907.
  • Rathod, J.P.; Prakash, G.; Pandit, R.; Lali, A.M. Agrobacterium-mediated Transformation of Promising Oil-bearing Marine Algae Parachlorella kessleri. Photosynth. Res. 2013, 118(1–2), 141–146.
  • Pruvost, J.; van Vooren, G.; Cogne, G.; Legrand, J. Investigation of Biomass and Lipids Production with Neochloris oleoabundans in Photobioreactor. Bioresour. Technol. 2009, 100(23), 5988–5995.
  • Jang, I.C.; Oh, S.J.; Seo, J.S.; Choi, W.B.; Song, S.I.; Kim, C.H.; Kim, Y.S.; Seo, H.K.; Choi, Y.D.; Nahm, B.H.; Kim, J.K. Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase in transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance Without Stunting Growth. Plant Physiol. 2003, 131(2), 516–524.
  • Choudhary, M.; Jetley, U.K.; Abash Khan, M.; Zutshi, S.; Fatma, T. Effect of Heavy Metal Stress on Proline, Malondialdehyde, and Superoxide Dismutase Activity in the Cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 2007, 66(2), 204–209.
  • Ou, P.; Wolff, S.P. Erythrocyte Catalase Inactivation (H2O2 production) by Ascorbic Acid and Glucose in the Presence of Aminotriazole: Role of Transition Metals and Relevance to Diabetes. Biochem. J. 1994, 303, 935–939.
  • Brennan, L.; Owende, P. Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-products. Renew. Sustainable Energy Rev. 2010, 14(2), 557–577.
  • Aghdasi, M.; Schluepmann, H.; Smeekens, S. Characterization of Arabidopsis Seedlings Growth and Development Under Trehalose Feeding. J. Cell Mol. Res. 2010, 2(1), 1–9.
  • Kirst, H.; Garcia-Cerdan, J.G.; Zurbriggen, A.; Melis, A. Assembly of the Light-harvesting Chlorophyll Antenna in the Green Alga Chlamydomonas reinhardtii Requires Expression of the TLA2-CpFTSY Gene. Plant Physiol. 2012, 158(2), 930–945.
  • Benaroudj, N.; Lee, D.H.; Goldberg, A.L. Trehalose Accumulation During Cellular Stress Protects Cells and Cellular Proteins from Damage by Oxygen Radicals. J. Biol. Chem. 2001, 276(26), 24261–24267.
  • Huesemann, M.H.; Hausmann, T.S.; Bartha, R.; Aksoy, M.; Weissman, J.C.; Benemann, J.R. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom). Appl. Biochem. Biotechnol. 2009, 157(3), 507–526.
  • Liu, W.; Au, D.W.; Anderson, D.M.; Lam, P.K.; Wu, R.S. Effects of Nutrients, Salinity, pH and Light: Dark Cycle on the Production of Reactive Oxygen Species in the Alga Chattonella marina. J. Exp. Mar. Biol. Ecol. 2007, 346(1), 76–86.
  • Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48(12), 909–930.
  • Gao, S.; Shen, S.; Wang, G.; Niu, J.; Lin, A.; Pan, G. PSI-driven Cyclic Electron Flow Allows Intertidal Macro-algae Ulva sp. (Chlorophyta) to Survive in Desiccated Conditions. Plant Cell Physiol. 2011, 52(5), 885–893.
  • White, S.; Anandraj, A.; Bux, F. PAM Fluorometry as a Tool to Assess Microalgal Nutrient Stress and Monitor Cellular Neutral Lipids. Bioresour. Technol. 2011, 102(2), 1675–1682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.