300
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Structure modeling and functional analysis of recombinant dextransucrase from Weissella confusa Cab3 expressed in Lactococcus lactis

, , , , , , , & show all

References

  • Collins, M.D.; Samelis, J.; Metaxopoulos, J.; Wallbanks, S. Taxonomic Studies on Some Leuconostoc-like Organisms from Fermented Sausages: Description of a New Genus Weissella for the Leuconostoc paramesenteroides Group of Species. J. Appl. Bacteriol. 1993, 75, 595–603.
  • Björkroth, K.J.; Schillinger, U.; Geisen, R.; Weiss, N.; Hoste, B.; Holzapfel, W.H.; Korkeala, H.J.; Vandamme, P. Taxonomic Study of Weissella confusa and Description of Weissella cibaria sp. nov., Detected in Food and Clinical Samples. Int. J. Syst. Evol. Microbiol. 2002, 52, 141–148.
  • Fusco, V.; Quero, G.M.; Stea, G.; Morea, M.; Visconti, A. Novel PCR-based Identification of Weissella confusa using an AFLP-derived Marker. Int. J. Food Microbiol. 2011, 145, 437–443.
  • Maina, N.H.; Tenkanen, M.; Maaheimo, H.; Juvonen, R.; Virkki, L. NMR Spectroscopic Analysis of Dextrans Produced by Leuconostoc citreum and Weisella confusa. Carbohydr. Res. 2008, 343, 1446–1455.
  • Seymour, F.R.; Knapp, R.D. Structural Analysis of Dextrans from Strains of Leuconostoc and Related Genera that Contain 3-O-α-D-glucosylated α-D-glucopyranosyl Residues at the Branch Points or in Consecutive Linear Positions. Carbohydr. Res. 1980, 81, 105–129.
  • Bounaix, M.S.; Robert, H.; Gabriel, V.; Morel, S.; Remaud-Siméon, M.; Gabriel, B.; Fontagné-Faucher, C. Characterization of Dextran-producing Weissella Strains Isolated from Sourdoughs and Evidence of Constitutive Dextransucrase Expression. FEMS Microbiol. Lett. 2010, 311, 18–26.
  • Katina, K.; Maina, N.H.; Juvonen, R.; Flander, L.; Johansson, L.; Virkki, L.; Tenkanen, M.; Laitila, A. In situ Production and Analyses of Weissella confusa Dextran in Wheat Sourdough. Food Microbiol. 2009, 26, 734–743.
  • Galle, S.; Schwab, C.; Arendt, E.; Ganzle, M. Exopolysaccharide-forming Weissella Strains as Starter Cultures for Sorghum and Wheat Sourdoughs. J. Agric. Food Chem. 2010, 58, 5834–5841.
  • Malik, A.; Radji, M.; Kralj, S.; Dijkhuizen, L. Screening of Lactic Acid Bacteria from Indonesia Reveals Glucansucrase and Fructansucrase Genes in two Different Weissella confusa Strains from Soya. FEMS Microbiol. Lett. 2009, 300, 131–138.
  • Amari, M.; Arango, L.F.G.; Gabriel, V.; Robert, H.; Morel, S.; Moulis, C.; Gabriel, B.; Remaud-Siméon, M.; Fontagné-Faucher, C. Characterization of a Novel Dextransucrase from Weissella confusa Isolated from Sourdough. Appl. Microbiol. Biotechnol. 2013, 97, 5413–5422.
  • Monchois, V.; Remaud-Simeon, M.; Monsan, P.; Willemot, R. Cloning and Sequencing of a Gene Coding for an Extracellular Dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 Synthesizing only a α (1→6) Glucan. FEMS Microbiol. Lett. 1998, 159, 307–315.
  • Ryu, H.J.; Kim, D.; Kim, D.W.; Moon, Y.Y.; Robyt, J.F. Cloning of a Dextransucrase Gene (fmcmds) from a Constitutive Dextransucrase Hyper-producing Leuconostoc mesenteroides B-512FMCM Developed using VUV. Biotechnol. Lett. 2000, 22, 421–425.
  • Ito, K.; Ito, S.; Shimamura, T.; Weyand, S.; Kawarasaki, Y.; Misaka, T.; Abe, K.; Kobayashi, T.; Cameron, A.D.; Iwata, S. Crystal Structure of Glucansucrase from the Dental Caries Pathogen Streptococcus mutans. J. Mol. Biol. 2011, 408(2), 177–186.
  • Vujicic-Zagar, A.; Pijning, T.; Kralj, S.; López, C.A.; Eeuwema, W.; Dijkhuizen, L.; Dijkstra, B.W. Crystal Structure of a 117 kDa Glucansucrase Fragment Provides Insight into Evolution and Product Specificity of GH70 Enzymes. Proc. Natl. Acad. Sci. (USA) 2010, 107(50), 21406–21411.
  • Brison, Y.; Tjaard, P.; Yannick, M.; Émeline, F.; Lionel, M.; Sandrine, M.; Gabrielle, P.V.; Monsan, P.; Samuel, T.; Remaud-Siméon, M.; Bauke, W.D. Functional and Structural Characterization of α-(1→2) Branching Sucrase Derived from DSR-E Glucansucrase. J. Biol. Chem. 2012, 287(11), 7915–7924.
  • Pijning, T.; Vujicic-Zagar, A.; Kralj, S.; Dijkhuizen, L.; Dijkstra, B.W. Structure of the α-1,6/α-1,4-specific Glucansucrase GTFA from Lactobacillus reuteri 121. Acta Crystallogr. Section F Struct. Biol. Cryst. Commun. 2012, 68, 1448–1454.
  • Mali, A. Molecular Cloning and in Silico Characterization of Fructansucrase Gene from Weissella confusa MBFCNC-2(1) Isolated from Local Beverage. J. Mol. Biol. Biotechnol. 2012, 20(1), 33–42.
  • Kajala, I.; Shi, Q.; Nyyssölä, A.; Maina, N.H.; Hou, Y.; Katina, K.; Tenkanen, M.; Juvonen, R. Cloning and Characterization of a Weissella confusa Dextransucrase and its Application in High Fibre Baking. PloS One 2015, 10(1), e0116418.
  • Shukla, S.; Goyal, A. 16S rRNA based Identification of a Glucan Hyper-producing Weissella confusa. Enzyme Res. 2011. [Online only] doi:10.4061/2011/250842.
  • Shukla, S.; Shi, Q.; Maina, N.; Juvonen, M.; Tenkanen, M.; Goyal, A. Weissella confusa Cab3 Dextransucrase: Properties and in vitro Synthesis of Dextran and Glucooligosaccharides. Carbohydr. Polym. 2014, 101, 554–564.
  • Kajala, I.; Mäkelä, J.; Coda, R.; Shukla, S.; Shi, Q.; Maina, N.H.; Juvonen, R.; Ekholm, P.; Goyal, A.; Tenkanen, M.; & Katina, K. Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl. Microbiol. Biotechnol. 2016, 100, 3499–3510.
  • DeMan, J.C.; Rogosa, M.; Sharpe, M.E. A Medium for the Cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135.
  • Shukla, S.; Goyal, A. Optimization of Fermentation Medium for Enhanced Glucansucrase and Glucan Production from Weissella confusa. Braz. Arch. Biol. Technol. 2011, 54, 1117–1124.
  • de Ruyter, P.G.; Kuipers, O.P.; de Vos, W.M. Controlled Gene Expression Systems for Lactococcus lactis with the Food-grade Inducer Nisin. Appl. Environ. Microbiol. 1996, 62, 3662–3667.
  • Holo, H.; Nes, I.F. Transformation of Lactococcus by Electroporation. In Nickoloff, J. Ed. Electroporation Protocols for Microorganisms. Humana Press, Totowa, NJ, 1995, pp. 195–199.
  • Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the head of Bacteriophage T4. Nature 1970, 227, 680–685.
  • Holt, S.M.; Al-Sheikh, H.; Shin, K.J. Characterization of Dextran Producing Leuconostoc Strains. Lett. Appl. Microbiol. 2001, 32, 185–189.
  • Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380.
  • Somogyi, M. A New Reagent for Determination of Sugars. J. Biol. Chem. 1945, 160, 61–68.
  • Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of Comparative Protein Modeling by MODELLER. Proteins 1995, 23(3), 318–326.
  • Fiser, A.; Do, R.K.; Sali, A. Modeling of Loops in Protein Structures. Protein Sci. 2000, 9(9), 1753–1773.
  • Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving Physical Realism, Stereochemistry, and Side-chain Accuracy in Homology Modeling: Four Approaches that Performed Well in CASP8. Proteins 2009, 77(Suppl 9), 114–122.
  • Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. Procheck—A Program to Check the Stereochemical Quality of Protein Structures. J. Appl. Crystallogr. 1993, 26, 283–291.
  • Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive Web Service for the Recognition of Errors in Three-dimensional Structures of Proteins. Nucleic Acids Res. 2007, 35(Web Server), W407–W410.
  • Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 1997, 25(24), 4876–4882.
  • Ah-Rum, Y.; Lee, S.R.; Jang, M.U.; Park, J.M.; Eom, H.J.; Han, N.S.; Kim, T.J.; Cloning of Dextransucrase Gene from Leuconostoc citreum HJ-P4 and its High-level Expression in E. coli by Low Temperature Induction. J. Microbiol. Biotechnol. 2009, 19(8), 829–835.
  • Cerna, M.; Barros, A.; Nunes, A.; Rocha, S.M.; Delgadillo, I.; Copikova, J.; Coimbra, M.A. Use of FT-IR Spectroscopy as a Tool for the Analysis of Polysaccharide Food Additives. Carbohydr. Polym. 2003, 51, 383–389.
  • Seymour, F.R.; Knapp, R.D. Structural Analysis of Dextrans from Strains of Leuconostoc and Related Genera that Contain 3-O-α-D-glucosylated α-D-glucopyranosyl Residues at the Branch Points or in Consecutive Linear Positions. Carbohydr. Res. 1980, 81, 105–129.
  • Shingel, K.I. Determination of Structural Peculiarities of Dextran, Pullulan and c-irradiated Pullulan by Fourier-transform IR Spectroscopy. Carbohydr. Res. 2002, 337, 1445–1451.
  • Majumder, A.; Goyal, A. Rheological and Gelling Properties of a Novel Glucan from Leuconostoc dextranicum NRRL B-1146. Food Res. Int. 2009, 42, 525–528.
  • Willemot, R.M.; Monsan, P.; Durand, G. Effects of Dextran on the Activity and Stability of Dextransucrase from Leuconostoc mesenteroides. Ann. N. Y. Acad. Sci. 1988, 542(1), 169–172.
  • Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of Protein Models with Three-dimensional Profiles. Nature 1992, 356(6364), 83–85.
  • Van Hijum, S.A.; Kralj, S.; Ozimek, L.K.; Dijkhuizen, L.; van Geel-Schutten, I.G. Structure-function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiol. Mol. Biol. Rev. 2006, 70(1), 157–176.
  • Kralj, S.; van Geel-Schutten, G.H.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Biochemical and Molecular Characterization of Lactobacillus reuteri 121 Reuteransucrase. Microbiology 2004, 150(Pt 7), 2099–2112.
  • Monchois, V.; Reverte, A.; Remaud-Simeon, M.; Monsan, P.; Willemot, R.M. Effect of Leuconostoc mesenteroides NRRL B-512 F Dextransucrase Carboxy-terminal Deletions on Dextran and Oligosaccharide Synthesis. Appl. Environ. Microbiol. 1998, 64(5), 1644–1649.
  • Holm, L.; Rosenstrom, P. Dali Server: Conservation Mapping in 3D. Nucleic Acids Res. 2010, 38(Web Server), W545–W549.
  • Ozimek, L.K.; Euverink, G.J.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Mutational Analysis of the Role of Calcium Ions in the Lactobacillus reuteri Strain 121 Fructosyltransferase (Levansucrase and Inulosucrase) Enzymes. FEBS Lett. 2005, 579, 1124–1128.
  • Robyt, J.F.; Kimble, B.K.; Walseth, T.F. The Mechanism of Dextransucrase Action. Direction of Dextran Biosynthesis. Arch. Biochem. Biophys. 1974, 165(2), 634–640.
  • Monchois, V.; Willemot, R.M.; Monsan, P. Glucansucrases: Mechanism of Action and Structure-function Relationships. FEMS Microbiol. Rev. 1999, 23(2), 31–51.
  • Albenne, C.; Skov, L.K.; Mirza, O.; Gajhede, M.; Feller, G.; d’Amico, S.; Gwénaëlle, A.; Gabrielle, P.; Bart, A.; Monsan, P.; Remaud-Siméon, M. Molecular Basis of the Amylose-like Polymer Formation Catalyzed by Neisseria polysaccharea Amylosucrase. J. Biol. Chem. 2004, 279(1), 726–734.
  • Mooser, G.; Hefta, S.A.; Paxton, R.J.; Shively, J.E.; Lee, T.D. Isolation and Sequence of an Active-site Peptide Containing a Catalytic Aspartic Acid from two Streptococcus sobrinus α-glucosyltransferases. J. Biol. Chem. 1991, 266, 8916–8922.
  • Jensen, M.H.; Mirza, O.; Albenne, C.; Remaud-Simeon, M.; Monsan, P.F.; Gajhede, M.; Skov, L.K. Crystal Structure of the Covalent Intermediate of Amylosucrase from Neisseria polysaccharea. Biochemistry 2004, 43, 3104–3110.
  • McCarter, J.; Withers, S.G. Mechanisms of Enzymatic Glycoside Hydrolysis. Curr. Opin. Struct. Biol. 1994, 4, 885–892.
  • Davies, G.; Henrissat, B. Structures and Mechanisms of Glycosyl Hydrolases. Curr. Biol. 1995, 3, 853–859.
  • Rye, C.S.; Withers, S.G. Glycosidase Mechanisms. Curr. Opin. Chem. Biol. 2000, 4, 573–580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.