500
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Peroxisome-targeted and tandem repeat multimer expressions of human antimicrobial peptide LL37 in Pichia pastoris

, , , , , , & show all

References

  • Boman, H.G. Peptide Antibiotics and Their Role in Innate Immunity. Annu. Rev. Immunol. 1995, 13, 61–92.
  • Hancock, R.E.; Sahl, H.G. Antimicrobial and Host-defense Peptides as New Anti-infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557.
  • Cowland, J.B.; Johnsen, A.H.; Borregaard, N. hCAP-18, A Cathelin/Pro-bactenecin-like Protein of Human Neutrophil Specific Granules. FEBS Lett. 1995, 368, 173–176.
  • Sorensen, O.E.; Follin, P.; Johnsen, A.H.; Calafat, J.; Tjabringa, G.S.; Hiemstra, P.S.; Borregaard, N. Human Cathelicidin, hCAP-18, is Processed to the Antimicrobial Peptide LL-37 by Extracellular Cleavage with Proteinase 3. Blood 2001, 97, 3951–3959.
  • Dürr, U.H.; Sudheendra, U.S.; Ramamoorthy, A. LL-37, The Only Human Member of the Cathelicidin Family of Antimicrobial Peptides. Biochim. Biophys. Acta 2006, 1758, 1408–1425.
  • Parachin, N.S.; Mulder, K.C.; Viana, A.A.; Dias, S.C.; Franco, O.L. Expression Systems for Heterologous Production of Antimicrobial Peptides. Peptides 2012, 38, 446–456.
  • Reddy, K.V.; Yedery, R.D.; Aranha, C. Antimicrobial Peptides: Premises and Promises. Int. J. Antimicrob. Agents 2004, 24, 536–547.
  • Sato, H.; Feix, J.B. Peptide–Membrane Interactions and Mechanisms of Membrane Destruction by Amphipathic α-Helical Antimicrobial Peptides. Biochim. Biophys. Acta Biomembr. 2006, 1758, 1245–1256.
  • Tossi, A.; Sandri, L.; Giangaspero, A. Amphipathic, Alpha-helical Antimicrobial Peptides. Biopolymers 2000, 55, 4–30.
  • Wang, F.; Song, H.; Wang, X.M.; Zhang, W.J.; Wang, B.L.; Zhao, J.; Hu, Z.B. Tandem Multimer Expression and Preparation of Hypoglycemic Peptide MC6 from Momordica charantia in Escherichia coli. Appl. Biochem. Biotechnol. 2012, 166, 612–619.
  • Zhou, L.; Zhao, Z.; Li, B.; Cai, Y.; Zhang, S. TrxA Mediating Fusion Expression of Antimicrobial Peptide CM4 from Multiple Joined Genes in Escherichia coli. Protein Expres. Purif. 2009, 64, 225–230.
  • Li, Y. Production of Human Antimicrobial Peptide LL-37 in Escherichia coli Using a Thioredoxin–SUMO Dual Fusion System. Protein Expres. Purif. 2013, 87, 72–78.
  • Moon, J.Y.; Henzler-Wildman, K.A.; Ramamoorthy, A. Expression and Purification of a Recombinant LL-37 from Escherichia coli. Biochim. Biophys. Acta 2006, 1758, 1351–1358.
  • Ramos, R.; Domingues, L.; Gama, M. Escherichia coli Expression and Purification of LL37 Fused to a Family III Carbohydrate-binding Module from Clostridium thermocellum. Protein Expres. Purif. 2010, 71, 1–7.
  • Skosyrev, V.S.; Kulesskiy, E.A.; Yakhnin, A.V.; Temirov, Y.V.; Vinokurov, L.M. Expression of the Recombinant Antibacterial Peptide Sarcotoxin IA in Escherichia coli Cells. Protein Expres. Purif. 2003, 28, 350–356.
  • Tian, Z.G.; Dong, T.T.; Yang, Y.L.; Teng, D.; Wang, J.H. Expression of Antimicrobial Peptide LH Multimers in Escherichia coli C43(DE3). Appl. Microbiol. Biotechnol. 2009, 83, 143–149.
  • Zhong, Z.; Xu, Z.; Peng, L.; Huang, L.; Fang, X.; Cen, P. Tandem Repeat mhBD2 Gene Enhance the Soluble Fusion Expression of hBD2 in Escherichia coli. Appl. Microbiol. Biotechnol. 2006, 71, 661–667.
  • Cereghino, J.L.; Cregg, J.M. Heterologous Protein Expression in the Methylotrophic Yeast Pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66.
  • Macauley-Patrick, S.; Fazenda, M.L.; Mcneil, B.; Harvey, L.M. Heterologous Protein Production Using the Pichia pastoris Expression System. Yeast 2005, 22, 249–270.
  • Van der Klei, I.J.; Yurimoto, H.; Sakai, Y.; Veenhuis, M. The Significance of Peroxisomes in Methanol Metabolism in Methylotrophic Yeast. Biochim. Biophys. Acta 2006, 1763, 1453–1462.
  • Van Dijk, R.; Faber, K.N.; Kiel, J.A.; Veenhuis, M.; van der Klei, I. The Methylotrophic Yeast Hansenula polymorpha: A Versatile Cell Factory. Enzyme Microb. Technol. 2000, 26, 793–800.
  • Wang, Y.; Xuan, Y.; Zhang, P.; Jiang, X.; Ni, Z.; Tong, L.; Zhou, X.; Lin, L.; Ding, J.; Zhang, Y. Targeting Expression of the Catalytic Domain of the Kinase Insert Domain Receptor (KDR) in the Peroxisomes of Pichia pastoris. FEMS Yeast Res. 2009, 9, 732–741.
  • Tu, P.N.; Wang, Y.; Cai, M.; Zhou, X.; Zhang, Y. Co-expression of Protein Tyrosine Kinases EGFR-2 and PDGFR with Protein Tyrosine Phosphatase 1B in Pichia pastoris. J. Microbiol. Biotechnol. 2014, 24, 152–159.
  • Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496.
  • Kim, S.J.; Quan, R.; Lee, S.J.; Lee, H.K.; Choi, J.K. Antibacterial Activity of Recombinant hCAP18/LL37 Protein Secreted from Pichia pastoris. J. Microbiol. 2009, 47, 358–362.
  • Farre, J.C.; Shirahama-Noda, K.; Zhang, L.; Booher, K.; Subramani, S. Localization of Proteins and Organelles Using Fluorescence Microscopy. Meth. Mol. Biol. 2007, 389, 239–250.
  • Aksam, E.B.; Koek, A.; Kiel, J.A.; Jourdan, S.; Veenhuis, M.; van der Klei, I.J. A Peroxisomal Lon Protease and Peroxisome Degradation by Autophagy Play Key Roles in Vitality of Hansenula polymorpha Cells. Autophagy 2007, 3, 96–105.
  • Li, J.F.; Zhang, J.; Zhang, Z.; Kang, C.T.; Zhang, S.Q. SUMO Mediating Fusion Expression of Antimicrobial Peptide CM4 from Two Joined Genes in Escherichia coli. Curr. Microbiol. 2011, 62, 296–300.
  • Distel, B.; Gould, S.J.; Voorn-Brouwer, T.; van der Berg, M.; Tabak, H.F.; Subramani, S. The Carboxyl-terminal Tripeptide Serine–Lysine–Leucine of Firefly Luciferase is Necessary But Not Sufficient for Peroxisomal Import in Yeast. New Biol. 1992, 4, 157–165.
  • Hong, I.; Lee, S.; Kim, Y.; Choi, S. Recombinant Expression of Human Cathelicidin (hCAP18/LL-37) in Pichia pastoris. Biotechnol. Lett. 2007, 29, 73–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.