377
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Reverse micellar extraction of papain with cationic detergent based system: An optimization approach

, , &

References

  • Azarkan, M.; El Moussaoui, A.; van Wuytswinkel, D.; Dehon, G.; Looze, Y. Fractionation and Purification of the Enzymes Stored in the Latex of Carica papaya . J. Chromatogr. B 2003, 790, 229–238.
  • Nitsawang, S.; Hatti-Kaul, R.; Kanasawud, P. Purification of Papain from Carica papaya Latex: Aqueous Two-phase Extraction Versus Two-step Salt Precipitation . Enzyme Microb. Technol. 2006, 39, 1103–1107.
  • Krishna, S.H.; Srinivas, N.D.; Raghavarao, K.S.M.S.; Karanth, N.G. Reverse Micellar Extraction for Downstream Processing of Proteins/Enzymes . Adv. Biochem. Eng. Biotechnol. 2002, 75, 119–183.
  • Kadam, K.L. Reverse Micelles as a Bioseparation Tool . Enzyme Microb. Technol. 1986, 8, 266–273.
  • Dong, J.; Cai, J.; Guo, X.; Xiao, J. Effect of the Spacer of Gemini Surfactants on Reverse Micellar Extraction of Bovine Serum Albumin . Soft Matter. 2013, 9, 11383–11391.
  • Nandini, K.E.; Rastogi, N.K. Reverse Micellar Extraction for Downstream Processing of Lipase: Effect of Various Parameters on Extraction . Process Biochem. 2009, 44, 1172–1178.
  • Hong, D.-P.; Lee, S.-S.; Kuboi, R. Conformational Transition and Mass Transfer in Extraction of Proteins by AOT–Alcohol–Isooctane Reverse Micellar Systems . J. Chromatogr. B Biomed. Sci. Appl. 2000, 743, 203–213.
  • Hebbar, H.U.; Sumana, B.; Raghavarao, K.S.M.S. Use of Reverse Micellar Systems for the Extraction and Purification of Bromelain from Pineapple Wastes . Bioresour. Technol. 2008, 99, 4896–4902.
  • Yu, Y.; Chu, Y.; Ji, J.-Y. Study of the Factors Affecting the Forward and Back Extraction of Yeast-lipase and its Activity by Reverse Micelles . J. Colloid Interface Sci. 2003, 267, 60–64.
  • Liu, Y.; Dong, X.; Sun, Y. New Development of Reverse Micelles and Applications in Protein Separation and Refolding . Chin. J. Chem. Eng. 2008, 16, 949–955.
  • Kumar, S.; Pakshirajan, K.; Dasu, V.V. Development of Medium for Enhanced Production of Glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428 . Appl. Microbiol. Biotechnol. 2009, 84, 477–486.
  • Wiley: Fundamentals of Quality Control and Improvement, 3rd Edn.—Amitava Mitra. Available at: http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470226536.html. (Accessed 15 February 2016).
  • Eriksson, K.-E.L.; Blanchette, R.A.; Ander, P. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer , Berlin, Heidelberg, 1990.
  • Rao, R.S.; Prakasham, R.S.; Prasad, K.K.; Rajesham, S.; Sarma, P.N.; Rao, L.V. Xylitol Production by Candida sp.: Parameter Optimization using Taguchi Approach . Process Biochem. 2004, 39, 951–956.
  • Cobb, B.D.; CIarkson, J.M. A Simple Procedure for Optimising the Polymerase Chain Reaction (PCR) using Modified Taguchi Methods . Nucleic Acids Res. 1994, 22, 3801–3805.
  • Venkata Mohan, S.; Chandrasekhara Rao, N.; Krishna Prasad, K.; Murali Krishna, P.; Sreenivas Rao, R.; Sarma, P.N. Anaerobic Treatment of Complex Chemical Wastewater in a Sequencing Batch Biofilm Reactor: Process Optimization and Evaluation of Factor Interactions using the Taguchi Dynamic DOE Methodology . Biotechnol. Bioeng. 2005, 90, 732–745.
  • Sivapathasekaran, C.; Mukherjee, S.; Ray, A.; Gupta, A.; Sen, R. Artificial Neural Network Modeling and Genetic Algorithm based Medium Optimization for the Improved Production of Marine Biosurfactant . Bioresour. Technol. 2010, 101, 2884–2887.
  • Wiley: Protein Methods, 2nd Edn.—Bollag, D.M.; Rozycki, M.D.; Edelstein, S.J. Available at: http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471118370.html. (Accessed 19 February 2016).
  • Yang, R.D.; Mather, R.R.; Fotheringham, A.F. The Application of Factorial Experimental Design to the Processing of Polypropylene Fibres . J. Mater. Sci. 2001, 36, 3097–3101.
  • Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan . Biochem. Eng. J. 2008, 41, 266–273.
  • Yasin, Y.; Ahmad, F.B.H.; Ghaffari-Moghaddam, M.; Khajeh, M. Application of a Hybrid Artificial Neural Network–Genetic Algorithm Approach to Optimize the Lead Ions Removal from Aqueous Solutions using Intercalated Tartrate-Mg–Al Layered Double Hydroxides . Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 2–7.
  • Thanapimmetha, A.; Luadsongkram, A.; Titapiwatanakun, B.; Srinophakun, P. Value Added Waste of Jatropha curcas Residue: Optimization of Protease Production in Solid State Fermentation by Taguchi DOE Methodology . Ind. Crops Prod. 2012, 37, 1–5.
  • Jahanshahi, M.; Sanati, M.H.; Babaei, Z. Optimization of Parameters for the Fabrication of Gelatin Nanoparticles by the Taguchi Robust Design Method . J. Appl. Stat. 2008, 35, 1345–1353.
  • Hegde, K.; Veeranki, V.D. Production Optimization and Characterization of Recombinant Cutinases from Thermobifida fusca sp. NRRL B-8184 . Appl. Biochem. Biotechnol. 2013, 170, 654–675.
  • Hemavathi, A.B.; Hebbar, H.U.; Raghavarao, K.S. Reverse Micellar Extraction of Bromelain from Ananas comosus L. Merryl . J. Chem. Technol. Biotechnol. 2007, 82, 985–992.
  • Studies on the purification of peroxidase from horseradish roots using reverse micelles. Available at: http://www.sciencedirect.com/science/article/pii/0141022995000313. (Accessed 15 February 2016).
  • Kinugasa, T.; Kondo, A.; Mouri, E.; Ichikawa, S.; Nakagawa, S.; Nishii, Y.; Watanabe, K.; Takeuchi, H. Effects of Ion Species in Aqueous Phase on Protein Extraction into Reversed Micellar Solution . Sep. Purif. Technol. 2003, 31, 251–259.
  • Tonova, K.; Lazarova, Z. Reversed Micelle Solvents as Tools of Enzyme Purification and Enzyme-catalyzed Conversion . Biotechnol. Adv. 2008, 26, 516–532.
  • Dhaneshwar, A.D.; Chaurasiya, R.S.; Hebbar, H.U. Process Optimization for Reverse Micellar Extraction of Stem Bromelain with a Focus on Back Extraction . Biotechnol. Prog. 2014, 30, 845–855.
  • Houng, J.-Y.; Liao, J.-H.; Wu, J.-Y.; Shen, S.-C.; Hsu, H.-F. Enhancement of Asymmetric Bioreduction of Ethyl 4-chloro Acetoacetate by the Design of Composition of Culture Medium and Reaction Conditions . Process Biochem. 2007, 42, 1–7.
  • Sinharoy, A.; Manikandan, N.A.; Pakshirajan, K. A Novel Biological Sulfate Reduction Method using Hydrogenogenic Carboxydotrophic Mesophilic Bacteria . Bioresour. Technol. 2015, 192, 494–500.
  • Nishiki, T.; Muto, A.; Kataoka, T.; Kato, D. Back Extraction of Proteins from Reversed Micellar to Aqueous Phase: Partitioning Behaviour and Enrichment . Chem. Eng. J. Biochem. Eng. J. 1995, 59, 297–301.
  • Ono, T.; Goto, M.; Nakashio, F.; Hatton, T.A. Extraction Behavior of Hemoglobin using Reversed Micelles by Dioleyl Phosphoric Acid . Biotechnol. Prog. 1996, 12, 793–800.
  • Mathew, D.S.; Juang, R.-S. Improved Back Extraction of Papain from AOT Reverse Micelles using Alcohols and a Counter-ionic Surfactant . Biochem. Eng. J. 2005, 25, 219–225.
  • Gaikaiwari, R.P.; Wagh, S.A.; Kulkarni, B.D. Extraction and Purification of Tannase by Reverse Micelle System . Sep. Purif. Technol. 2012, 89, 288–296.
  • Dungan, S.R.; Bausch, T.; Hatton, T.A.; Plucinski, P.; Nitsch, W. Interfacial Transport Processes in the Reversed Micellar Extraction of Proteins . J. Colloid Interface Sci. 1991, 145, 33–50.
  • Lakshmi, M.C.; Raghavarao, K.S.M.S. Downstream Processing of Soy Hull Peroxidase Employing Reverse Micellar Extraction . Biotechnol. Bioprocess Eng. 2011, 15, 937–945.
  • Baskar, G.; Rajasekar, V.; Renganathan, S. Modeling and Optimization of L-asparaginase Productionby Enterobacter Aerogenes using Artificial Neural Network Linked Genetic Algorithm . Int. J. Chem. Eng. Appl. 2011, 98–100. doi:10.7763/IJCEA.2011.V2.83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.