241
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Improving thermal hysteresis activity of antifreeze protein from recombinant Pichia pastoris by removal of N-glycosylation

, , &

References

  • Priddle, J.; Hawes, I.; Ellis-Evans, J.C.; Smith, T.J. Antarctic Aquatic Ecosystems as Habitats for Phytoplankton. Biol. Rev. 1986, 61, 199–238.
  • Kim, E.J.; Jung, W.; Lim, S.; Kim, S.; Han, S.J.; Choi, H.G. Growth and Lipid Content at Low Temperature of Arctic Alga Chlamydomonas sp. KNM0029C. Bioprocess Biosyst. Eng. 2016, 39, 151–157.
  • Jung, W.; Gwak, Y.; Davies, P.L.; Kim, H.J.; Jin, E. Isolation and Characterization of Antifreeze Proteins from the Antarctic Marine Microalga Pyramimonas gelidicola. Mar. Biotechnol. 2014, 16, 502–512.
  • Lee, J.H.; Park, A.K.; Do, H.; Park, K.S.; Moh, S.H.; Chi, Y.M.; Kim, H.J. Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast. J. Biol. Chem. 2012, 287, 11460–11468.
  • Do, H.; Kim, S.J.; Kim, H.J.; Lee, J.H. Structure-based Characterization and Antifreeze Properties of a Hyperactive Ice-binding Protein from the Antarctic Bacterium Flavobacterium frigoris PS1. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2014, 70, 1061–1073.
  • Hoshino, T.; Kiriaki, M.; Ohgiya, S.; Fujiwara, M.; Kondo, H.; Nishimiya, Y.; Yumoto, I.; Tsuda, S. Antifreeze Proteins from Snow Mold Fungi. Can. J. Bot. 2003, 81, 1175–1181.
  • Doxey, A.C.; Yaish, M.W.; Griffith, M.; McConkey, B.J. Ordered Surface Carbons Distinguish Antifreeze Proteins and their Ice-binding Regions. Nat. Biotechnol. 2006, 24, 852–855.
  • Macauley-Patrick, S.; Fazenda, M.L.; McNeil, B.; Harvey, L.M. Heterologous Protein Production Using the Pichia pastoris Expression System. Yeast 2005, 22, 249–270.
  • Lee, J.H.; Lee, S.G.; Do, H.; Park, J.C.; Kim, E.; Choe, Y.H.; Han, S.J.; Kim, H.J. Optimization of the Pilot-scale Production of an Ice-binding Protein by Fed-batch Culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 2013, 97, 3383–3393.
  • Adivitiya; Dagar, V.K.; Devi, N.; Khasa, Y.P. High Level Production of Active Streptokinase in Pichia pastoris Fed-batch Culture. Int. J. Biol. Macromol. 2016, 83, 50–60.
  • Kim, E.J.; Do, H.; Lee, J.H.; Lee, S.G.; Kim, H.J.; Han, S.J. Production of Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Using Fed-batch Culture of Recombinant Pichia pastoris. Kor. Soc. Biotechnol. Bioeng. J. 2014, 29, 303–306.
  • Skropeta, D. The Effect of Individual N-Glycans on Enzyme Activity. Bioorg. Med. Chem. 2009, 17, 2645–2653.
  • Fonseca-Maldonado, R.; Maller, A.; Bonneil, E.; Thibault, P.; Botelho-Machado, C.; Ward, R.J.; Polizeli Mde, L. Biochemical Properties of Glycosylation and Characterization of a Histidine Acid Phosphatase (Phytase) Expressed in Pichia pastoris. Protein Expr. Purif. 2014, 99, 43–49.
  • Li, R.; Xie, C.; Zhang, Y.; Li, B.; Donelan, W.; Li, S.; Han, S.; Wang, X.; Cui, T.; Tang, D. Expression of Recombinant Human IL-4 in Pichia pastoris and Relationship between its Glycosylation and Biological Activity. Protein Expr. Purif. 2014, 96, 1–7.
  • Tian, B.; Chen, Y.; Ding, S. A Combined Approach for Improving Alkaline Acetyl Xylan Esterase Production in Pichia pastoris, and Effects of Glycosylation on Enzyme Secretion, Activity and Stability. Protein Expr. Purif. 2012, 85, 44–50.
  • Ranaei Siadat, S.O.; Mollasalehi, H.; Heydarzadeh, N. Substrate Affinity and Catalytic Efficiency are Improved by Decreasing Glycosylation Sites in Trichoderma reesei Cellobiohydrolase I Expressed in Pichia pastoris. Biotechnol. Lett. 2016, 38, 483–488.
  • Palomares, L.A.; Estrada-Mondaca, S.; Ramirez, O.T. Production of Recombinant Proteins: Challenges and Solutions. Methods Mol. Biol. 2004, 267, 15–52.
  • Tong, L.; Lin, Q.; Wong, W.K.; Ali, A.; Lim, D.; Sung, W.L.; Hew, C.L.; Yang, D.S. Extracellular Expression, Purification, and Characterization of a Winter Flounder Antifreeze Polypeptide from Escherichia coli. Protein Expr. Purif. 2000, 18, 175–181.
  • Loewen, M.C.; Liu, X.; Davies, P.L.; Daugulis, A.J. Biosynthetic Production of Type II Fish Antifreeze Protein: Fermentation by Pichia pastoris. Appl. Microbiol. Biotechnol. 1997, 48, 480–486.
  • Chao, H.; Davies, P.L.; Sykes, B.D.; Sonnichsen, F.D. Use of Proline Mutants to Help Solve the NMR Solution Structure of Type III Antifreeze Protein. Protein Sci. 1993, 2, 1411–1428.
  • Park, K.S.; Do, H.; Lee, J.H.; Park, S.I.; Kim, E.; Kim, S.J.; Kang, S.H.; Kim, H.J. Characterization of the Ice-binding Protein from Arctic Yeast Leucosporidium sp. AY30. Cryobiol. 2012, 64, 286–296.
  • Gwak, I.G.; Jung, W.S.; Kim, H.J.; Kang, S.H.; Jin, E. Antifreeze Protein in Antarctic Marine Diatom, Chaetoceros neogracile. Mar. Biotechnol. 2010, 12, 630–639.
  • Janech, M.G.; Krell, A.; Mock, T.; Kang, J.S.; Raymond, J.A. Ice-binding Proteins from Sea Ice Diatoms (Bacillariophyceae). J. Phycol. 2006, 42, 410–416.
  • Bayer-Giraldi, M.; Weikusat, I.; Besir, H.; Dieckmann, G. Characterization of an Antifreeze Protein from the Polar Diatom Fragilariopsis cylindrus and its Relevance in Sea Ice. Cryobiology 2011, 63, 210–219.
  • Do, H.; Lee, J.H.; Lee, S.G.; Kim, H.J. Crystallization and Preliminary X-Ray Crystallographic Analysis of an Ice-binding Protein (FfIBP) from Flavobacterium frigoris PS1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 806–809.
  • Raymond, J.A.; Fritsen, C.; Shen, K. An Ice-binding Protein from an Antarctic Sea Ice Bacterium. FEMS Microbiol. Ecol. 2007, 61, 214–221.
  • Middleton, A.J.; Marshall, C.B.; Faucher, F.; Bar-Dolev, M.; Braslavsky, I.; Campbell, R.L.; Walker, V.K.; Davies, P.L. Antifreeze Protein from Freeze-tolerant Grass has a Beta-roll Fold with an Irregularly Structured Ice-binding Site. J. Mol. Biol. 2012, 416, 713–724.
  • Bretthauer, R.K.; Castellino, F.J. Glycosylation of Pichia pastoris-derived Proteins. Biotechnol. Appl. Biochem. 1999, 30, 193–200.
  • Sagt, C.M.; Kleizen, B.; Verwaal, R.; de Jong, M.D.; Muller, W.H.; Smits, A.; Visser, C.; Boonstra, J.; Verkleij, A.J.; Verrips, C.T. Introduction of an N-Glycosylation Site Increases Secretion of Heterologous Proteins in Yeasts. Appl. Environ. Microbiol. 2000, 66, 4940–4944.
  • Nielsen, J. Production of Biopharmaceutical Proteins by Yeast: Advances through Metabolic Engineering. Bioengineered 2013, 4, 207–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.