272
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Dual-substrate inhibition kinetic studies for recombinant human interferon gamma producing Pichia pastoris

&

References

  • Gao, M.; Shi, Z. Process Control and Optimization for Heterologous Protein Production by Methylotrophic Pichia pastoris. Chin. J. Chem. Eng. 2013, 21, 216–226.
  • Potvin, G.; Ahmad, A.; Zhang, Z. Bioprocess Engineering Aspects of Heterologous Protein Production in Pichia pastoris: A Review. Biochem. Eng. J. 2012, 64, 91–105.
  • Demain, A.L.; Vaishnav, P. Production of Recombinant Proteins by Microbes and Higher Organisms. Biotechnol. Adv. 2009, 27, 297–306.
  • Berlec, A.; Štrukelj, B. Current State and Recent Advances in Biopharmaceutical Production in Escherichia coli, Yeasts and Mammalian Cells. J. Ind. Microbiol. Biotechnol. 2013, 40, 257–274.
  • Vogl, T.; Hartner, F.S.; Glieder, A. New Opportunities by Synthetic Biology for Biopharmaceutical Production in Pichia pastoris. Curr. Opin. Biotechnol. 2013, 24, 1094–1101.
  • Li, P.; Anumanthan, A.; Gao, X.-G.; Ilangovan, K.; Suzara, V.V.; Düzgüneş, N.; Renugopalakrishnan, V. Expression of Recombinant Proteins in Pichia Pastoris. Appl. Biochem. Biotechnol. 2007, 142, 105–124.
  • Cereghino, J.L.; Cregg, J.M. Heterologous Protein Expression in the Methylotrophic Yeast Pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66.
  • Macauley-Patrick, S.; Fazenda, M.L.; McNeil, B.; Harvey, L.M. Heterologous Protein Production Using the Pichia pastoris Expression System. Yeast 2005, 22, 249–270.
  • Muñoz, D.F.M.; Enciso, N.A.A.; Ruiz, H.C.; Avellaneda, L.A.B. A Simple Structured Model for Recombinant IDShr Protein Production in Pichia pastoris. Biotechnol. Lett. 2008, 30, 1727–1734.
  • Brierley, R.A.; Bussineau, C.; Kosson, R.; Melton, A.; Siegel, R.S. Fermentation Development of Recombinant Pichia pastoris Expressing the Heterologous Gene: Bovine Lysozyme. Ann. N. Y. Acad. Sci. 1990, 589, 350–362.
  • Thorpe, E.D.; d’Anjou, M.C.; Daugulis, A.J. Sorbitol as a Non-repressing Carbon Source for Fed-batch Fermentation of Recombinant Pichia pastoris. Biotechnol. Lett. 1999, 21, 669–672.
  • Prabhu, A.A.; Mandal, B.; Dasu, V.V. Medium Optimization for High Yield Production of Extracellular Human Interferon-γ from Pichia pastoris: A Statistical Optimization and Neural Network-based Approach. Korean J. Chem. Eng. 2017, 34, 1109–1121. doi:10.1007/s11814-016-0358-1
  • Xie, J.; Zhou, Q.; Du, P.; Gan, R.; Ye, Q. Use of Different Carbon Sources in Cultivation of Recombinant Pichia pastoris for Angiostatin Production. Enzyme Microb. Technol. 2005, 36, 210–216.
  • Cos, O.; Ramón, R.; Montesinos, J.L.; Valero, F. Operational Strategies, Monitoring and Control of Heterologous Protein Production in the Methylotrophic Yeast Pichia pastoris Under Different Promoters: A Review. Microb. Cell Factories 2006, 5, 17.
  • Bader, F.G. Analysis of Double-substrate Limited Growth. Biotechnol. Bioeng. 1978, 20, 183–202.
  • Lee, A.L.; Ataai, M.M.; Shuler, M.L. Double-substrate-limited Growth of Escherichia coli. Biotechnol. Bioeng. 1984, 26, 1398–1401.
  • dÕAnjou, M.C.; Daugulis, A.J. A Model-based Feeding Strategy for Fed-batch Fermentation of Recombinant Pichia pastoris. Biotechnol. Tech. 1997, 11, 865–868.
  • Jahic, M.; Rotticci-Mulder, J.; Martinelle, M.; Hult, K.; Enfors, S.-O. Modeling of Growth and Energy Metabolism of Pichia pastoris Producing a Fusion Protein. Bioprocess Biosyst. Eng. 2002, 24, 385–393.
  • Zhang, W.; Inan, M.; Meagher, M.M. Fermentation Strategies for Recombinant Protein Expression in the Methylotrophic Yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 2000, 5, 275–287.
  • Zhang, W.; Hywood Potter, K.J.; Plantz, B.A.; Schlegel, V.L.; Smith, L.A.; Meagher, M.M. Pichia pastoris Fermentation with Mixed-feeds of Glycerol and Methanol: Growth Kinetics and Production Improvement. J. Ind. Microbiol. Biotechnol. 2003, 30, 210–215.
  • Ren, H.T.; Yuan, J.Q.; Bellgardt, K.-H. Macrokinetic Model for Methylotrophic Pichia pastoris Based on Stoichiometric Balance. J. Biotechnol. 2003, 106, 53–68.
  • Jia, L.; Yuan, J.Q. Cell Cycle Model for Recombinant Pichia pastoris During Glycerol Fed-batch Cultivation. Process Biochem. 2007, 42, 828–833.
  • Çelik, E.; Çalık, P.; Oliver, S.G. A Structured Kinetic Model for Recombinant Protein Production by Mut+Strain of Pichia pastoris. Chem. Eng. Sci. 2009, 64, 5028–5035.
  • Spadiut, O.; Herwig, C. Dynamics in Bioprocess Development for Pichia pastoris. Bioengineered 2014, 5, 401–404.
  • Jungo, C.; Marison, I.; von Stockar, U. Mixed Feeds of Glycerol and Methanol Can Improve the Performance of Pichia pastoris Cultures: A Quantitative Study Based on Concentration Gradients in Transient Continuous Cultures. J. Biotechnol. 2007, 128, 824–837.
  • Gray, P.W.; Goeddel, D.V. Structure of the Human Immune Interferon Gene. Nature 1982, 298, 859–863.
  • Younes, H.M.; Amsden, B.G. Interferon-gamma Therapy: Evaluation of Routes of Administration and Delivery Systems. J. Pharm. Sci. 2002, 91, 2–17.
  • Prabhu, A.A.; Veeranki, V.D.; Dsilva, S.J. Improving the Production of Human Interferon Gamma (hIFN-γ) in Pichia pastoris Cell Factory: An Approach of Cell Level. Process Biochem. 2016, 51, 709–718.
  • Dutta, K.; Dasu, V.V.; Hegde, K. Development of Medium and Kinetic Modeling for Enhanced Production of Cutinase from Pseudomonas cepacia NRRL B-2320. Adv. Microbiol. 2013, 3, 479–489.
  • Sanjay, K.; Anand, A.P.; Veeranki, V.D.; Kannan, P. Kinetics of Growth on Dual Substrates, Production of Novel Glutaminase-free L-Asparaginase and Substrates Utilization by Pectobacterium carotovorum MTCC 1428 in a Batch Bioreactor. Korean J. Chem. Eng. 2017, 34, 118–126. doi:10.1007/s11814-016-0216-1
  • Zacharof, M.-P.; Lovitt, R.W. Modelling and Simulation of Cell Growth Dynamics, Substrate Consumption, and Lactic Acid Production Kinetics of Lactococcus lactis. Biotechnol. Bioprocess Eng. 2013, 18, 52–64.
  • Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M. Kinetic Models in Industrial Biotechnology – Improving Cell Factory Performance. Metab Eng. 2014, 24, 38–60.
  • Enzymes by Haldane J B S - AbeBooks. Available at: http://www.abebooks.com/book-search/title/enzymes/author/haldane-j-b-s/ (Accessed 17th March 2016).
  • Andrews, J.F. A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates. Biotechnol. Bioeng. 1968, 10, 707–723.
  • Aiba, S.; Shoda, M.; Nagatani, M. Kinetics of Product Inhibition in Alcohol Fermentation. Biotechnol. Bioeng. 1968, 10, 845–864.
  • Agarwal, R.; Mahanty, B.; Dasu, V.V. Modeling Growth of Cellulomonas cellulans NRRL B 4567 Under Substrate Inhibition During Cellulase Production. Chem. Biochem. Eng. Q. 2009, 23, 213–218.
  • Dutta, K. Substrate Inhibition Growth Kinetics for Cutinase Producing Pseudomonas cepacia Using Tomato-peel Extracted Cutin. Chem. Biochem. Eng. Q. 2015, 29, 437–445.
  • Batra, J.; Beri, D.; Mishra, S. Response Surface Methodology Based Optimization of β-Glucosidase Production from Pichia pastoris. Appl. Biochem. Biotechnol. 2014, 172, 380–393.
  • Sibirny, A.A.; Titorenko, V.I.; Efremov, B.D.; Tolstorukov, I.I. Multiplicity of Mechanisms of Carbon Catabolite Repression Involved in the Synthesis of Alcohol Oxidase in the Methylotrophic Yeast Pichia pinus. Yeast 1987, 3, 233–241.
  • Egli, T.; Dijken, J.P.; van, Veenhuis, M.; Harder, W.; Fiechter, A. Methanol Metabolism in Yeasts: Regulation of the Synthesis of Catabolic Enzymes. Arch. Microbiol. 1980, 124, 115–121.
  • Roggenkamp, R.; Janowicz, Z.; Stanikowski, B.; Hollenberg, C.P. Biosynthesis and Regulation of the Peroxisomal Methanol Oxidase from the Methylotrophic Yeast Hansenula polymorpha. Mol. Gen. Genet. MGG 1984, 194, 489–493.
  • Zhang, W.; Bevins, M.A.; Plantz, B.A.; Smith, L.A.; Meagher, M.M. Modeling Pichia pastoris Growth on Methanol and Optimizing the Production of a Recombinant Protein, the Heavy-chain Fragment C of Botulinum Neurotoxin, Serotype A. Biotechnol. Bioeng. 2000, 70, 1–8.
  • Zhou, X.-S.; Zhang, Y.-X. Decrease of Proteolytic Degradation of Recombinant Hirudin Produced by Pichia pastoris by Controlling the Specific Growth Rate. Biotechnol. Lett. 2002, 24, 1449–1453.
  • Sobie, E.A. Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophys. J. 2009, 96, 1264–1274.
  • Banerjee, A.; Ghoshal, A.K. Isolation and Characterization of Hyper Phenol Tolerant Bacillus sp. from Oil Refinery and Exploration Sites. J. Hazard. Mater. 2010, 176, 85–91.
  • Files, D.; Ogawa, M.; Scaman, C.H.; Baldwin, S.A. A Pichia pastoris Fermentation Process for Producing High-levels of Recombinant Human Cystatin-C. Enzyme Microb. Technol. 2001, 29, 335–340.
  • Razaghi, A.; Razaghi, A.; Tan, E.; Lua, L.H.L.; Owens, L.; Karthikeyan, O.P.; Heimann, K. Is Pichia pastoris a Realistic Platform for Industrial Production of Recombinant Human Interferon Gamma? Biologicals 2016, 45, 52–60.
  • Looser, V.; Bruhlmann, B.; Bumbak, F.; Stenger, C.; Costa, M.; Camattari, A.; Fotiadis, D.; Kovar, K. Cultivation Strategies to Enhance Productivity of Pichia pastoris: A Review. Biotechnol. Adv. 2015, 33, 1177–1193.
  • Paulová, L., Hyka, P., Branská, B., Melzoch, K., Kovar, K. Use of a Mixture of Glucose and Methanol as Substrates for the Production of Recombinant Trypsinogen in Continuous Cultures with Pichia pastoris Mut +. J Biotechnol. 2012, 157, 180–188.
  • Jungo, C.; Marison, I.; von Stockar, U. Mixed Feeds of Glycerol and Methanol Can Improve the Performance of Pichia pastoris Cultures: A Quantitative Study Based on Concentration Gradients in Transient Continuous Cultures. J. Biotechnol. 2007, 128, 824–837.
  • Jungo, C.; Marison, I.; von Stockar, U. Regulation of Alcohol Oxidase of a Recombinant Pichia pastoris Mut+Strain in Transient Continuous Cultures. J. Biotechnol. 2007, 130, 236–246.
  • Inan, M.; Meagher, M.M. The Effect of Ethanol and Acetate on Protein Expression in Pichia pastoris. J. Biosci. Bioeng. 2001, 92, 337–341.
  • Stratton, J.; Chiruvolu, V.; Meagher, M. High Cell-density Fermentation. Methods Mol. Biol. Clifton NJ 1998, 103, 107–120.
  • Jenzsch, M.; Lange, M.; Bär, J.; Rahfeld, J.-U.; Lübbert, A. Bioreactor Retrofitting to Avoid Aeration with Oxygen in Pichia pastoris Cultivation Processes for Recombinant Protein Production. Chem. Eng. Res. Des. 2004, 82, 1144–1152.
  • Egli, T.; Bosshard, C.; Hamer, G. Simultaneous Utilization of Methanol-glucose Mixtures by Hansenula polymorpha in Chemostat: Influence of Dilution Rate and Mixture Composition on Utilization Pattern. Biotechnol. Bioeng. 1986, 28, 1735–1741.
  • Egli, T.; Käppeli, O.; Fiechter, A. Regulatory Flexibility of Methylotrophic Yeasts in Chemostat Cultures: Simultaneous Assimilation of Glucose and Methanol at a Fixed Dilution Rate. Arch. Microbiol. 1982, 131, 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.