123
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Identification of methionine oxidation in human recombinant erythropoietin by mass spectrometry: Comparative isoform distribution and biological activity analysis

, , , , &

References

  • Drummond, G.R.; Selemidis, S.; Griendling, K.K.; Sobey, C.G. Combating Oxidative Stress in Vascular Disease: NADPH Oxidases as Therapeutic Targets. Nat. Rev. Drug Discov. 2011, 10(6), 453–471.
  • Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of Oxidative Stress as an Anticancer Strategy. Nat. Rev. Drug Discov. 2013, 12(12), 931–947.
  • Pitocco, D.; Tesauro, M.; Alessandro, R.; Ghirlanda, G.; Cardillo, C. Oxidative Stress in Diabetes: Implications for Vascular and Other Complications. Int. J. Mol. Sci. 2013, 14(11), 21525–21550.
  • Shringarpure, R.; Davies, K.J. Protein Turnover by the Proteasome in Aging and Disease. Free Radic. Biol. Med. 2002, 32(11), 1084–1089.
  • Swomley, A.M.; Butterfield, D.A. Oxidative Stress in Alzheimer Disease and Mild Cognitive Impairment: Evidence from Human Data Provided by Redox Proteomics. Arch. Toxicol. 2015, 89(10), 1669–1680.
  • Maiese, K.; Chong, Z.; Hou, J.; Shang, Y. Erythropoietin and Oxidative Stress. Curr. Neurovasc. Res. 2008, 5(2), 125–142.
  • Sola, R.J.; Griebenow, K. Effects of Glycosylation on the Stability of Protein Pharmaceuticals. J. Pharm. Sci. 2009, 98(4), 1223–1245.
  • Stracke, J.; Emrich, T.; Rueger, P.; Schlothauer, T.; Kling, L.; Knaupp, A.; Hertenberger, H.; Wolfert, A.; Spick, C.; Lau, W.; Drabner, G.; Reiff, U.; Koll, H.; Papadimitriou, A. A Novel Approach to Investigate the Effect of Methionine Oxidation on Pharmacokinetic Properties of Therapeutic Antibodies. MAbs 2014, 6(5), 1229–1242.
  • Davies, M.J. The Oxidative Environment and Protein Damage. Biochim. Biophys. Acta 2005, 1703(2), 93–109.
  • Facheris, M.; Beretta, S.; Ferrarese, C. Peripheral Markers of Oxidative Stress and Excitotoxicity in Neurodegenerative Disorders: Tools for Diagnosis and Therapy? J. Alzheimers Dis. 2004, 6(2), 177–184.
  • Seifried, H.E. Oxidative Stress and Antioxidants: A Link to Disease and Prevention? J. Nutr. Biochem. 2007, 18(3), 168–171.
  • Berlett, B.S.; Stadtman, E.R. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem. 1997, 272(33), 20313–20316.
  • Vogt, W. Oxidation of Methionyl Residues in Proteins: Tools, Targets, and Reversal. Free Radic. Biol. Med. 1995, 18(1), 93–105.
  • Levine, R.L.; Moskovitz, J.; Stadtman, E.R. Oxidation of Methionine in Proteins: Roles in Antioxidant Defense and Cellular Regulation. IUBMB Life 2000, 50(4–5), 301–307.
  • Liang, X.; Kaya, A.; Zhang, Y.; Le, D.; Hua, D.; Gladyshev, V.N. Characterization of Methionine Oxidation and Methionine Sulfoxide Reduction Using Methionine-rich Cysteine-free Proteins. BMC Biochem. 2012, 13, 21.
  • Hsu, Y.R.; Narhi, L.O.; Spahr, C.; Langley, K.E.; Lu, H.S. In Vitro Methionine Oxidation of Escherichia coli-derived Human Stem Cell Factor: Effects on the Molecular Structure, Biological Activity, and Dimerization. Protein Sci. 1996, 5(6), 1165–1173.
  • Stadtman, E.R., Moskovitz, J.; Levine, R.L. Oxidation of Methionine Residues of Proteins: Biological Consequences. Antioxid. Redox Signal. 2003, 5(5), 577–582.
  • Kuo, Y.M.; Webster, S.; Emmerling, M.R.; De Lima, N.; Roher, A.E. Irreversible Dimerization/Tetramerization and Post-translational Modifications Inhibit Proteolytic Degradation of A Beta Peptides of Alzheimer’s Disease. Biochim. Biophys. Acta 1998, 1406(3), 291–298.
  • Griffiths, S.W.; Cooney, C.L. Relationship Between Protein Structure and Methionine Oxidation in Recombinant Human Alpha 1-Antitrypsin. Biochemistry 2002, 41(20), 6245–6252.
  • Mo, J.; Yan, Q.; So, C.K.; Soden, T.; Lewis, M.J.; Hu, P. Understanding the Impact of Methionine Oxidation on the Biological Functions of IgG1 Antibodies Using Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2016, 88(19), 9495–9502.
  • Gao, X.; Ji, J.A.; Veeravalli, K.; Wang, Y.J.; Zhang, T.; Mcgreevy, W.; Zheng, K.; Kelley, R.F.; Laird, M.W.; Liu, J.; Cromwell, M. Effect of Individual Fc Methionine Oxidation on FcRn Binding: Met252 Oxidation Impairs FcRn Binding More Profoundly Than Met428 Oxidation. J. Pharm. Sci. 2015, 104(2), 368–377.
  • Hoshi, T.; Heinemann, S. Regulation of Cell Function by Methionine Oxidation and Reduction. J. Physiol. 2001, 531(Pt 1), 1–11.
  • Elliott, S.; Egrie, J.; Browne, J.; Lorenzini, T.; Busse, L.; Rogers, N.; Ponting, I. Control of rHuEPO Biological Activity: The Role of Carbohydrate. Exp. Hematol. 2004, 32(12), 1146–1155.
  • Benavente, F.; Giménez, E.; Olivieri, A.C.; Barbosa, J.; Sanz-Nebot, V. Estimation of the Composition of Recombinant Human Erythropoietin Mixtures Using Capillary Electrophoresis and Multivariate Calibration Methods. Electrophoresis 2006, 27(20), 4008–4015.
  • Joyeux-Faure, M. Cellular Protection by Erythropoietin: New Therapeutic Implications? J. Pharmacol. Exp. Ther. 2007, 323(3), 759–762.
  • Katavetin, P.; Inagi, R.; Miyata, T.; Shao, J.; Sassa, R.; Adler, S.; Eto, N.; Kato, H.; Fujita, T.; Nangaku, M. Erythropoietin Induces Heme Oxygenase-1 Expression and Attenuates Oxidative Stress. Biochem. Biophys. Res. Commun. 2007, 359(4), 928–934.
  • Wu, Y.; Shang, Y.; Sun, S.-G.; Liu, R.-G.; Yang, W.-Q. Protective Effect of Erythropoietin Against 1-Methyl-4-phenylpyridinium-induced Neurodegenaration in PC12 Cells. Neurosci. Bull. 2007, 23(3), 156–164.
  • Grune, T.; Sommerburg, O.; Siems, W.G. Oxidative Stress in Anemia. Clin. Nephrol. 2000, 53(1 Suppl), S18–S22.
  • Ludat, K.; Sommerburg, O.; Grune, T.; Siems, W.G.; Riedel, E.; Hampl, H. Oxidation Parameters in Complete Correction of Renal Anemia. Clin. Nephrol. 2000, 53(1 Suppl), S30–S35.
  • Bailey, D.M.; Lundby, C.; Berg, R.M.G.; Taudorf, S.; Rahmouni, H.; Gutowski, M.; Mulholland, C.W.; Sullivan, J.L.; Swenson, E.R.; McEneny, J.; Young, I.S.; Pedersen, B.K.; Møller, K.; Pietri, S.; Culcasi, M. On the Antioxidant Properties of Erythropoietin and Its Association with the Oxidative-nitrosative Stress Response to Hypoxia in Humans. Acta Physiol. (Oxford) 2014, 212(2), 175–187.
  • Bailey, D.M.; McEneny, J.; Mathieu-Costello, O.; Henry, R.R.; James, P.E.; McCord, J.M.; Pietri, S.; Young, I.S.; Richardson, R.S. Sedentary Aging Increases Resting and Exercise-induced Intramuscular Free Radical Formation. J. Appl. Physiol. 2010, 109(2), 449–456.
  • Katavetin, P.; Tungsanga, K.; Eiam-Ong, S.; Nangaku, M. Antioxidative Effects of Erythropoietin. Kidney Int. Suppl. 2007, 107, S10–S15.
  • Osikov, M.V.; Telesheva, L.F.; Ageev, Y.I. Antioxidant Effect of Erythropoietin During Experimental Chronic Renal Failure. Bull. Exp. Biol. Med. 2015, 160(2), 202–204.
  • Sommerburg, O.; Grune, T.; Hampl, H.; Riedel, E.; Ehrich, J.H.; Siems, W.G. Does Treatment of Renal Anemia with Recombinant Erythropoietin Influence Oxidative Stress in Hemodialysis Patients? Clin. Nephrol. 2000, 53(1 Suppl), S23–S29.
  • Maiese, K.; Li, F.; Chong, Z.Z. New Avenues of Exploration for Erythropoietin. JAMA 2005, 293(1), 90–95.
  • Smith, K.J. The Cardiovascular Effects of Erythropoietin. Cardiovasc. Res. 2003, 59(3), 538–548.
  • van der Meer, P. Erythropoietin in Cardiovascular Diseases. Eur. Heart J. 2004, 25(4), 285–291.
  • Bunn, H.F. Erythropoietin. Cold Spring Harb. Perspect. Med. 2013, 3(3), a011619.
  • Johnson, D.W.; Forman, C.; Vesey, D.A. Novel Renoprotective Actions of Erythropoietin: New Uses for an Old Hormone. Nephrology (Carlton) 2006, 11(4), 306–312.
  • Ardalan, M.R.; Nasri, H. Erythropoietin Ameliorates Oxidative Stress and tissue Injury Following Renal Ischemia/Reperfusion in Rat Kidney and Lung. Med. Princ. Pract. 2013, 22(1), 70–74.
  • Uchida, E.; Morimoto, K.; Kawasaki, N.; Ahmed, Y.; Said, A.; Hayakawa, T. Effect of Active Oxygen Radicals on Protein and Carbohydrate Moieties of Recombinant Human Erythropoietin. Free Radic. Res. 1997, 27(3), 311–323.
  • Zhang, J.; Chakraborty, U.; Villalobos, A.P.; Brown, J.M.; Foley, J.P. Optimization and Qualification of Capillary Zone Electrophoresis Method for Glycoprotein Isoform Distribution of Erythropoietin for Quality Control Laboratory. J. Pharm. Biomed. Anal. 2009, 50(3), 538–543.
  • Suzuki, S.; Kodera, Y.; Saito, T.; Fujimoto, K.; Momozono, A.; Hayashi, A.; Kamata, Y.; Shichiri, M. Methionine Sulfoxides in Serum Proteins as Potential Clinical Biomarkers of Oxidative Stress. Sci. Rep. 2016, 6, 38299.
  • Houde, D.; Kauppinen, P.; Mhatre, R.; Lyubarskaya, Y. Determination of Protein Oxidation by Mass Spectrometry and Method Transfer to Quality Control. J. Chromatogr. A 2006, 1123(2), 189–198.
  • Fliss, H., Weissbach, H.; Brot, N. Oxidation of Methionine Residues in Proteins of Activated Human Neutrophils. Proc. Natl. Acad. Sci. USA 1983, 80(23), 7160–7164.
  • Schey, K.L.; Finley, E.L. Identification of Peptide Oxidation by Tandem Mass Spectrometry. Acc. Chem. Res. 2000, 33(5), 299–306.
  • Lagerwerf, F.M.; van de Weert, M.; Heerma, W.; Haverkamp, J. Identification of Oxidized Methionine in Peptides. Rapid Commun. Mass Spectrom. 1996, 10(15), 1905–1910.
  • Griffiths, S.W.; Cooney, C.L. Development of a Peptide Mapping Procedure to Identify and Quantify Methionine Oxidation in Recombinant Human Alpha 1-Antitrypsin. J. Chromatogr. A 2002, 942(1–2), 133–143.
  • Hollemeyer, K., Heinzle, E.; Tholey, A. Identification of Oxidized Methionine Residues in Peptides Containing Two Methionine Residues by Derivatization and Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Proteomics 2002, 2(11), 1524–1531.
  • Jenkins, N. Modifications of Therapeutic Proteins: Challenges and Prospects. Cytotechnology 2007, 53(1–3), 121–125.
  • Okano, M., Sato, M.; Kageyama, S. Identification of the Long-acting Erythropoiesis-stimulating Agent Darbepoetin Alfa in Human Urine by Liquid Chromatography-tandem Mass Spectrometry. Anal. Bioanal. Chem. 2014, 406(5), 1317–1329.
  • Arnold, J.N.; Wormald, M.R.; Sim, R.B.; Rudd, P.M.; Dwek, R.A. The Impact of Glycosylation on the Biological Function and Structure of Human Immunoglobulins. Annu. Rev. Immunol. 2007, 25, 21–50.
  • Geuijen, K.P.; Halim, L.A.; Schellekens, H.; Schasfoort, R.B.; Wijffels, R.H.; Eppink, M.H. Label-free Glycoprofiling with Multiplex Surface Plasmon Resonance: A Tool to Quantify Sialylation of Erythropoietin. Anal. Chem. 2015, 87(16), 8115–8122.
  • Yin, B.; Gao, Y.; Chung, C.; Yang, S.; Blake, E.; Stuczynski, M.C.; Tang, J.; Kildegaard, H.F.; Andersen, M.R.; Zhang, H.; Betenbaugh, M.J. Glycoengineering of Chinese Hamster Ovary Cells for Enhanced Erythropoietin N-Glycan Branching and Sialylation. Biotechnol. Bioeng. 2015, 112(11), 2343–2351.
  • Labrenz, S.R.; Calmann, M.A.; Heavner, G.A.; Tolman, G. The Oxidation of Methionine-54 of Epoetinum Alfa Does Not Affect Molecular Structure or Stability, But Does Decrease Biological Activity. PDA J. Pharm. Sci. Technol. 2008, 62(3), 211–223.
  • Wang, W.; Vlasak, J.; Li, Y.; Pristatsky, P.; Fang, Y.; Pittman, T.; Roman, J.; Wang, Y.; Prueksaritanont, T.; Ionescu, R. Impact of Methionine Oxidation in Human IgG1 Fc on Serum Half-life of Monoclonal Antibodies. Mol. Immunol. 2011, 48(6–7), 860–866.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.