167
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Direct bioconversion of rice residue from canteen waste into lipids by new amylolytic oleaginous yeast Sporidiobolus pararoseus KX709872

, , , &

References

  • Yan, S.; Li, J.; Chen, X.; Wu, J.; Wang, P.; Ye, J.; Yao, J. Enzymatical Hydrolysis of Food Waste and Ethanol Production from the Hydrolysate. Renew. Energy 2011, 36(4), 1259–1265. DOI: 10.1016/j.renene.2010.08.020.
  • Uçkun Kiran, E.; Trzcinski, A. P.; Ng, W. J.; Liu, Y. Bioconversion of Food Waste to Energy: A Review. Fuel 2014, 134, 389–399. DOI: 10.1016/j.fuel.2014.05.074.
  • Moon, H. C.; Song, I. S.; Kim, J. C.; Shirai, Y.; Lee, D. H.; Kim, J. K.; Chung, S. O.; Kim, D. H.; Oh, K. K.; Cho, Y. S. Enzymatic Hydrolysis of Food Waste and Ethanol Fermentation. Int. J. Energy Res. 2009, 33(2), 164–172. DOI: 10.1002/er.1432.
  • Tanimura, A.; Takashima, M.; Sugita, T.; Endoh, R.; Kikukawa, M.; Yamaguchi, S.; Sakuradani, E.; Ogawa, J.; Ohkuma, M.; Shima, J. Cryptococcus terricola is a Promising Oleaginous Yeast for Biodiesel Production from Starch Through Consolidated Bioprocessing. Sci. Rep. 2014, 4, 4776. DOI: 10.1038/srep04776.
  • Donot, F.; Fontana, A.; Baccou, J. C.; Strub, C.; Schorr-Galindo, S. Single Cell Oils (SCOs) From Oleaginous Yeasts and Moulds: Production and Genetics. Biomass. Bioenergy 2014, 68, 135–150. DOI: 10.1016/j.biombioe.2014.06.016.
  • Papanikolaou, S.; Aggelis, G. Lipids of Oleaginous Yeasts. Part I: Biochemistry of Single Cell Oil Production. Eur. J. Lipid Sci. Technol. 2011, 113(8), 1031–1051. DOI: 10.1002/ejlt.201100014.
  • Xu, J.; Zhao, X.; Wang, W.; Du, W.; Liu, D. Microbial Conversion of Biodiesel Byproduct Glycerol to Triacylglycerols by Oleaginous Yeast Rhodosporidium toruloides and the Individual Effect of Some Impurities on Lipid Production. Biochem. Eng. J. 2012, 65, 30–36. DOI: 10.1016/j.bej.2012.04.003.
  • Patel, A.; Arora, N.; Sartaj, K.; Pruthi, V.; Pruthi, P. A. Sustainable Biodiesel Production from Oleaginous Yeasts Utilizing Hydrolysates of Various Non-Edible Lignocellulosic Biomasses. Renew. Sustain. Energy Rev. 2016, 62, 836–855. DOI: 10.1016/j.rser.2016.05.014.
  • Lin, J.; Shen, H.; Tan, H.; Zhao, X.; Wu, S.; Hu, C.; Zhao, Z. K. Lipid Production by Lipomyces starkeyi Cells in Glucose Solution Without Auxiliary Nutrients. J. Biotechnol. 2011, 152(4), 184–188. DOI: 10.1016/j.jbiotec.2011.02.010.
  • Karatay, S. E.; Dönmez, G. Improving the Lipid Accumulation Properties of the Yeast Cells for Biodiesel Production Using Molasses. Bioresour. Technol. 2010, 101(20), 7988–7990. DOI: 10.1016/j.biortech.2010.05.054.
  • Wang, Q.; Guo, F. J.; Rong, Y. J.; Chi, Z. M. Lipid Production from Hydrolysate of Cassava Starch by Rhodosporidium toruloides 21167 for Biodiesel Making. Renew. Energy 2012, 46, 164–168. DOI: 10.1016/j.renene.2012.03.002.
  • Xue, F.; Gao, B.; Zhu, Y.; Zhang, X.; Feng, W.; Tan, T. Pilot-Scale Production of Microbial Lipid Using Starch Wastewater as Raw Material. Bioresour. Technol. 2010, 101(5), 6092–6095. DOI: 10.1016/j.biortech.2010.01.124.
  • Chi, Z.; Zheng, Y.; Jiang, A.; Chen, S. Lipid Production by Culturing Oleaginous Yeast and Algae with Food Waste and Municipal Wastewater in an Integrated Process. Appl. Biochem. Biotechnol. 2011, 165(2), 442–453. DOI: 10.1007/s12010-011-9263-6.
  • Helrich, K., ed. Official Methods of Analysis of AOAC International, 15th ed.; Association of Official Analytical Chemists: Arlington, USA, 1990.
  • Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28(3), 350–356. DOI: 10.1021/ac60111a017.
  • Watanabe, M.; Ichinose, K.; Sasano, K.; Ozaki, Y.; Tsuiki, T.; Hidaka, H.; Kanemoto, S. Effect of Enzymatic Treatment on Sedimentation and Flocculation Abilities of Solid Particles in Rice Washing Drainage and its Relationship with Protein Profiles. J. Biosci. Bioeng. 2011, 112(1), 67–70. DOI: 10.1016/j.jbiosc.2011.03.005.
  • Braunwald, T.; Schwemmlein, L.; Graeff-Hönninger, S.; French, W. T.; Hernandez, R.; Holmes, W. E.; Claupein, W. Effect of Different C/N Ratios on Carotenoid and Lipid Production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013, 97(14), 6581–6588. DOI: 10.1007/s00253-013-5005-8.
  • Melo, R. C.; D’Avila, H.; Bozza, P. T.; Weller, P. F. Imaging Lipid Bodies within Leukocytes with Different Light Microscopy Techniques. Methods Mol. Biol. 2011, 689, 149–161. DOI: 10.1007/978-1-60761-950-5_9.
  • Chaiyaso, T.; Manowattana, A. Enhancement of Carotenoids and Lipids Production by Oleaginous red Yeast Sporidiobolus pararoseus KM281507. Prep. Biochem. Biotechnol. 2018, 31(1), 13–23. DOI: 10.1080/10826068.2017.1381620.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31(3), 426–428. DOI: 10.1021/ac60147a030.
  • Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Phys. 1959, 37(8), 911–917. DOI: 10.1139/o59-099.
  • Chaiyaso, T.; Seesuriyachan, P.; Zimmermann, W.; H-Kittikun, A. Purification and Characterization of Lipase from Newly Isolated Burkholderia multivorans PSU-AH130 and its Application for Biodiesel Production. Ann. Microbiol. 2012, 62(4), 1615–1624. DOI: 10.1007/s13213-011-0418-z.
  • James, D. GC Analysis of Total Fatty Acid Methyl Esters (FAME) and Methly Linolenate in Biodiesel Using the Revised EN14103:2011 Method; Agilent Technologies, Inc.: Santa Clara, USA, 2012.
  • McCurry, J. D. GC–MS Analysis of Trace Fatty Acid Methyl Esters (FAME) in Jet Fuel Using Energy Institute Method P585; Agilent Technology, Inc.: Santa Clara, USA, 2011.
  • Peramuna, A.; Summers, M. L. Composition and Occurrence of Lipid Droplets in the Cyanobacterium Nostoc punctiforme. Arch. Microbiol. 2014, 196(12), 881–890. DOI: 10.1007/s00203-014-1027-6.
  • Dasgupta, D.; Sharma, T.; Bhatt, A.; Bandhu, S.; Ghosh, D. Cultivation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 in split column airlift reactor and its influence on fuel properties. Biocatal. Agric. Biotechnol. 2017, 10, 308–316. DOI: 10.1016/j.bcab.2017.04.002.
  • Patel, A.; Arora, N.; Mehtani, J.; Pruthi, V.; Pruthi, P. A. Assessment of Fuel Properties on the Basis of Fatty Acid Profiles of Oleaginous Yeast for Potential Biodiesel Production. Renew. Sustain. Energy Rev. 2017, 77, 604–616. DOI: 10.1016/j.rser.2017.04.016.
  • Brar, K. K.; Sarma, A. K.; Aslam, M.; Polikarpov, I.; Chadha, B. S. Potential of Oleaginous yeast Trichosporon sp., for Conversion of Sugarcane Bagasse Hydrolysate into Biodiesel. Bioresour. Technol. 2017, 242, 161–168. DOI: 10.1016/j.biortech.2017.03.155.
  • Canesin, E. A.; Oliveira, C. C.; Matsushita, M.; Dias, L. F.; Pedrão, M. R.; Souza, N. E. Characterization of Residual Oils for Biodiesel Production. Electron. J. Biotechnol. 2014, 17(1), 39–45. DOI: 10.1016/j.ejbt.2013.12.007.
  • Xie, F.; Quan, S.; Liu, D.; Ma, H.; Li, F.; Zhou, F.; Chen, G. Purification and Characterization of a Novel α-Amylase from a Newly Isolated Bacillus methylotrophicus Strain P11–2. Process Biochem. 2014, 49(1), 47–53. DOI: 10.1016/j.procbio.2013.09.025.
  • Teste, M. A.; François, J. M.; Parrou, J. L. Characterization of a New Multigene Family Encoding Isomaltases in the Yeast Saccharomyces cerevisiae, the IMA Family. J. Biol. Chem. 2010, 285(35), 26815–26824. DOI: 10.1074/jbc.m110.145946.
  • Diaz, G.; Melis, M.; Batetta, B.; Angius, F.; Falchi, A. M. Hydrophobic Characterization of Intracellular Lipids in Situ by Nile Red Red/Yellow Emission Ratio. Micron 2008, 39(7), 819–824. DOI: 10.1016/j.micron.2008.01.001.
  • Sitepu, I. R.; Ignatia, L.; Franz, A. K.; Wong, D. M.; Faulina, S. A.; Tsui, M.; Kanti, A.; Boundy-Mills, K. An Improved High-Throughput Nile Red Fluorescence Assay for Estimating Intracellular Lipids in a Variety of Yeast Species. J. Microbiol. Methods 2012, 91(2), 321–328. DOI: 10.1016/j.mimet.2012.09.001.
  • Saenge, C.; Cheirsilp, B.; Suksaroge, T.; Bourtoom, T. Efficient Concomitant Production of Lipids and Carotenoids by Oleaginous Red Yeast Rhodotorula glutinis Cultured in Palm Oil Mill Effluent and Application of Lipids for Biodiesel Production. Biotechnol. Bioeng. 2011, 16(1), 23–33. DOI: 10.1007/s12257-010-0083-2.
  • Kolouchová, I.; Sigle, K.; Schreiberová, O.; Masák, J.; Řezanka, T. New Yeast-Based Approaches in Production of Palmitoleic Acid. Bioresour. Technol. 2015, 192, 726–734. DOI: 10.1016/j.biortech.2015.06.048.
  • Anastassiadis, S.; Rehm, H. J. Oxygen and Temperature Effect on Continuous Citric Acid Secretion in Candida oleophila. J. Biotechnol. 2006, 9(4), 416–423. DOI: 10.2225/vol9-issue4-fulltext-3.
  • Sha, Q. A. A Comparative Study on Four Oleaginous Yeasts on Their Lipid Accumulating Capacity; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2013.
  • Kavšček, M.; Bhutada, G.; Madl, T.; Natter, K. Optimization of Lipid Production with a Genome-scale Model of Yarrowia lipolytica. BMC Syst. Biol. 2015, 9(1), 72. DOI: 10.1186/s12918-015-0217-4.
  • Kim, J. H.; Choi, S. K.; Park, Y. S.; Yun, C. W.; Cho, W. D.; Chee, K. M.; Chang, H. I. Effect of Culture Conditions on Astaxanthin Formation in Red Yeast Xanthophyllomyces dendrorhous Mutant JH1. J. Microbiol. Biotechnol. 2006, 16, 438–442.
  • Manowattana, A.; Techapun, C.; Watanabe, M.; Chaiyaso, T. Bioconversion of Biodiesel-Derived Crude Glycerol into Lipids and Carotenoids by an Oleaginous Red Yeast Sporidiobolus pararoseus KM281507 in an Airlift Bioreactor. J. Biosci. Bioeng. 2018, 125(1), 59–66. DOI: 10.1016/j.jbiosc.2017.07.014.
  • Zhang, Z.; Zhang, X.; Tan, T. Lipid and Carotenoid Production by Rhodotorula glutinis Under Irradiation/High-Temperature and Dark/Low-Temperature Cultivation. Bioresour. Technol. 2014, 157, 149–153. DOI: 10.1016/j.biortech.2014.01.039.
  • Gen, Q.; Wang, Q.; Chi, Z. M. Direct Conversion of Cassava Starch into Single Cell Oil by Co-Cultures of the Oleaginous Yeast Rhodosporidium toruloides and Immobilized Amylases-Producing Yeast Saccharomycopsis fibuligera. Renew. Energy 2014, 62, 522–526. DOI: 10.1016/j.renene.2013.08.016.
  • Yang, X.; Jin, G.; Wang, Y.; Shen, H.; Zhao, Z. K. Lipid Production on Free Fatty Acids by Oleaginous Yeasts Under Non-Growth Conditions. Bioresour. Technol. 2015, 193, 557–562. DOI: 10.1016/j.biortech.2015.06.134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.