336
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Optimization and production of curdlan gum using Bacillus cereus PR3 isolated from rhizosphere of leguminous plant

, , , , &

References

  • Thomas, S.; Kalarikkal, N.; Yang, W.; Babu, S. S. Biomaterial Applications: Micro to Nanoscales; Apple Academic Press: New Jersey, USA, 2014; p 146.
  • Rodriguez, A.; Anzaldo, X.; Perez, D.; Garza, E.; Villanueva, H.; Rivas, G.; Cervantes, J.; Lugo, J.; Loredo, A.; Gonzalez, M.; et al. Microbial Competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of Non-Toxic Exopolysaccharide with Applications as a Wide-Spectrum Antimicrobial. Sci. Rep. 2018, 8, 798. DOI: 10.1038/s41598-017-17908-8.
  • Zhan, X. B.; Lin, C. C.; Zhang, H. T. Recent Advances in Curdlan Biosynthesis, Biotechnological Production, and Applications. Appl. Microbiol. Biotechnol. 2012, 93(2), 525–531. DOI: 10.1007/s00253-011-3740-2.
  • Gummadi, S. N.; Kumar, K. Production of Extracellular Water Insoluble β-1, 3-Glucan (Curdlan) from Bacillus sp. SNC07. Biotechnol. Bioprocess Eng. 2005, 10(6), 546–551. DOI: 10.1007/bf02932292.
  • Harada, T.; Masada, M.; Fujimori, K.; Maeda, I. Production of Firm, Resilient Gel-Forming Polysaccharide in Natural Medium by a Mutant of Alcaligenes faecalis var. myxogenes 10C3. J. Ferment. Technol. 1966, 44, 20–24. DOI: 10.1271/bbb1961.30.196.
  • Mangolim, C. R.; Silva, T. T. D.; Fenelon, V. C.; Koga, L. N.; Ferreira, S.B. D.S.; Bruschi, M. L.; Matioli, G. Description of Recovery Method used for Curdlan Produced by Agrobacterium sp. IFO 13140 and Its Relation to the Morphology and Physicochemical and Technological Properties of the Polysaccharide. PLoS ONE 2017, 12(2), 1–19. DOI: 10.1371/journal.pone.0171469.
  • Lee, I. Y.; Kim, M. K.; Lee, J. H.; Seo, W. T.; Jung, J. K.; Lee, H. W.; Park, Y. H. Influence of Agitation Speed on Production of curdlan by Agrobacterium species. Bioproc. Eng. 1999, 20(4), 283–287. DOI: 10.1007/pl00009049.
  • El-Sayed, M. H.; Arafat, H. H.; Elsehemy, I. A.; Basha, M. Optimization, Purification and Physicochemical Characterization of Curdlan Produced by Paenibacillus sp. Strain NBR-10. Biosci. Biotechnol. Res. Asia 2016, 13(2), 901–909. DOI: 10.13005/bbra/2113.
  • Divyasri, D.; Gunasekar, V.; Benny, I. S.; Ponnusami, V. A Review of Industrial Applications of Curdlan. Int. J. ChemTech Res. 2014, 6(5), 3000–3003.
  • Ogawa, K.; Watanabe, T.; Tsurugi, J.; Ono, S. Conformational Behaviour of a Gel-Forming (1–3)-β-D-Glucan in Alkaline Solution. Carbohydr. Res. 1972, 23, 399–405. DOI: 10.1016/s0008-6215(00)82709-3.
  • Kim, B. S.; Jung, I. D.; Kim, J. S.; Lee, J. H.; Lee, I. Y.; Lee, K. B. Curdlan Gels as Protein Drug Delivery Vehicles. Biotechnol. Lett. 2000, 22(14), 1127–1130.
  • Moon, C. J.; Lee, J. H. Use of Curdlan and Activated Carbon Composed Adsorbents for Heavy Metal Removal. Process Biochem. 2005, 40(3), 1279–1283. DOI: 10.1016/j.procbio.2004.05.009.
  • Eweda, W. E.; Sharaf, M. S.; El Sayed, A. M. Production of Curdlan by Some Bacteria Isolated from Egyptian Soils. Middle East J. Appl. Sci. 2015, 5(1), 102–118.
  • Singh, S.; Shukla, R.; Kikani, B. Molecular Diversity and Biotechnological Relevance of Thermophilic Actinobacteria. In 2nd ed.; Satyanarayana, T., Little Child, J., Kawarabayasi, Y., Eds.; Thermophilic Microbes in Environmental and Industrial Biotechnology, Springer, Dordrecht, 2013; pp 456–479.
  • Stanbury, P. F.; Whitaker, A.; Hall, S. J. Principles of Fermentation Technology; Butterworth-Heinemann: Burlington, MA, 1995; p 110.
  • Vanavil, B., Perumalsamy, M., Seshagiri Rao, A. Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media. J. Microbiol. Biotechnol. 2013, 23(9), 1229–1243. DOI: 10.4014/jmb.1212.12031.
  • Kasote, D. M.; Katyare, S. S.; Hegde, M. V.; Bae, H. Significance of Antioxidant Potential of Plants and Its Relevance to Therapeutic Applications. Int. J. Biol. Sci. 2015, 11(8), 982–991. DOI: 10.7150/ijbs.12096.
  • Ahmed, D.; Khan, M. M.; Saeed, R. Comparative Analysis of Phenolics, Flavonoids, and Antioxidant and Antibacterial Potential of Methanolic, Hexanic and Aqueous Extracts from Adiantum caudatum Leaves. Antioxidants 2015, 4(2), 394–409. DOI: 10.3390/antiox4020394.
  • Jung, D. Y.; Cho, Y. S.; Chung, C. H.; Jung, D. I.; Kim, K.; Lee, J. W. Improved Production of Curdlan with Concentrated Cells of Agrobacterium sp. Biotechnol. Bioprocess Eng. 2001, 6(2), 107–111. DOI: 10.1007/bf02931955.
  • Tukulula, M.; Hayeshi, R.; Fonteh, P.; Meyer, D.; Ndamase, A.; Madziva, M. T.; Khumalo, V.; Lubuschagne, P.; Naicker, B.; Swai, H.; et al. Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities. Pharm. Res. 2015, 32(8), 2713–2726. DOI: 10.1007/s11095-015-1655-9.
  • Rafigh, S. M.; Yazdi, A. V.; Vossoughi, M.; Safekordi, A. A.; Ardjmand, M. Optimization of Culture Medium and Modeling of Curdlan Production from Paenibacillus polymyxa by RSM and ANN. Int. J. Biol. Macromol. 2014, 70, 463–473. DOI: 10.1016/j.ijbiomac.2014.07.034.
  • Li, J.; Zhu, L.; Zheng, Z.; Zhan, X.; Lin, C.; Zong, Y.; Li, W. A New Effective Process for Production of Curdlan Oligosaccharides based on Alkali-Neutralization Treatment and Acid Hydrolysis of Curdlan Particles in Water Suspension. Appl. Microbiol. Biotechnol. 2013, 97(19), 8495–8503. DOI: 10.1007/s00253-013-5125-1.
  • Yang, Z.; Li, Y.; Li, F.; Huang, Q.; Zhang, G.; Shi, T. Design and Preparation of pH-Responsive Curdlan Hydrogels as a Novel Protein Delivery Vector. Chin. J. Polym. Sci. 2016, 34(3), 280–287. DOI: 10.1007/s10118-016-1757-9.
  • Anusuya, S.; Sathiyabama, M. Preparation of β-D-Glucan Nanoparticles and Its Antifungal Activity. Int. J. Biol. Macromol. 2014, 70, 440–443. DOI: 10.1016/j.ijbiomac.2014.07.011.
  • Vanavil, B.; Perumalsamy, M.; Seshagiri Rao, A. Studies on the Effects of Bioprocess Parameters and Kinetics of Rhamnolipid Production by P. aeruginosa NITT 6L. Chem. Biochem. Eng. Q. 2014, 28(3), 383–390. DOI: 10.15255/cabeq.2013.1801.
  • Yu, L. J.; Wu, J. R.; Liu, J.; Zhan, X. B.; Zheng, Z. Y.; Lin, C. C. Enhanced Curdlan Production in Agrobacterium sp. ATCC 31749 by Addition of Low-Polyphosphates. Biotechnol. Bioprocess Eng. 2011, 16, 34–41. DOI: 10.1007/s12257-010-0145-5.
  • Kim, M.; Lee, I.; Lee, J.; Kim, K.; Rhee, Y.; Park, Y. Residual Phosphate Concentration under Nitrogen-Limiting Conditions Regulates Curdlan Production in Agrobacterium Species. J. Ind. Microbiol. Biotechnol. 2000, 25, 180–83. DOI: 10.1038/sj.jim.7000053.
  • Martinez, C. O.; Ruiz, S. P.; Nogueira, M. T.; Bona, E.; Portilho, M.; Matioli, G. Effective Immobilization of Agrobacterium sp. IFO 13140 Cells in Loofa Sponge for Curdlan Biosynthesis. Molecules 2015, 20, 7957–7973. DOI: 10.3390/molecules20057957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.