684
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Biosynthesis of butyric acid by Clostridium tyrobutyricum

, , &

References

  • Liu, S. Q.; Bischoff, K. M.; Leathers, T. D.; Qureshi, N.; Rich, J. O.; Hughes, S. R. Butyric Acid from Anaerobic Fermentation of Lignocellulosic Biomass Hydrolysates by Clostridium Tyrobutyricum Strain RPT-4213. Bioresour. Technol. 2013, 143, 322–329. DOI: 10.1016/j.biortech.2013.06.015.
  • Wang, J. F.; Lin, M.; Xu, M. M.; Yang, S. T. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. Adv. Biochem. Eng. Biotechnol. 2016, 156, 323–361. DOI: 10.1007/10_2015_5009.
  • Zigová, J.; Šturdík, E.; Vandák, D.; Schlosser, Š. Butyric Acid Production by Clostridium Butyricum with Integrated Extraction and Pertraction. Process Biochem. 1999, 34, 835–843. DOI: 10.1016/s0032-9592(99)00007-2.
  • Vandák, D.; Zigová, J.; Šturdík, E.; Schlosser, Š. Evaluation of Solvent and pH for Extractive Fermentation of Butyric Acid. Process Biochem. 1997, 32, 245–251. DOI: 10.1016/s0032-9592(96)00084-2.
  • Zhang, C. H.; Yang, H.; Yang, F. X.; Ma, Y. J. Current Progress on Butyric Acid Production by Fermentation. Curr. Microbiol. 2009, 59, 656–663. DOI: 10.1007/s00284-009-9491-y.
  • Dwidar, M.; Park, J. Y.; Mitchell, R. J.; Sang, B. I. The Future of Butyric Acid in Industry. Sci. World J. 2012, 2012, 471417. DOI: 10.1100/2012/471417.
  • Pouillart, P. R. Role of Butyric Acid and its Derivatives in the Treatment of Colorectal Cancer and Hemoglobinopathies. Life Sci. 1998, 63, 1739–1760. DOI: 10.1016/s0024-3205(98)00279-3.
  • Williams, E. A.; Coxhead, J. M.; Mathers, J. C. Anti-Cancer Effects of Butyrate: Use of Micro-Array Technology to Investigate Mechanisms. Proc. Nutr. Soc. 2003, 62, 107–115. DOI: 10.1079/pns2002230.
  • Sjöblom, M.; Matsakas, L.; Christakopoulos, P.; Rova, U. Production of Butyric Acid by Clostridium Tyrobutyricum (ATCC25755) Using Sweet Sorghum Stalks and Beet Molasses. Ind. Crop. Prod. 2015, 74, 535–544. DOI: 10.1016/j.indcrop.2015.05.041.
  • Jiang, L.; Wang, J. F.; Liang, S. Z.; Wang, X. N.; Cen, P. L.; Xu, Z. N. Production of Butyric Acid from Glucose and Xylose with Immobilized Cells of Clostridium Tyrobutyricum in a Fibrous-Bed Bioreactor. Appl. Biochem. Biotech. 2010, 160, 350–359. DOI: 10.1007/s12010-008-8305-1.
  • Huang, L.; Xiang, Y. J.; Cai, J.; Jiang, L.; Lv, Z. B.; Zhang, Y. Z.; Xu, Z. N. Effects of Three Main Sugars in Cane Molasses on the Production of Butyric Acid with Clostridium Tyrobutyricum. Korean J. Chem. Eng. 2011, 28, 2312–2315. DOI: 10.1007/s11814-011-0110-9.
  • Wei, D.; Liu, X. G.; Yang, S. T. Butyric Acid Production from Sugarcane Bagasse Hydrolysate by Clostridium Tyrobutyricum Immobilized in a Fibrous-Bed Bioreactor. Bioresource Technol. 2013, 129, 553–560. DOI: 10.1016/j.biortech.2012.11.065.
  • Michel-Savin, D.; Marchal, R.; Vandecasteele, J. P. Control of the Selectivity of Butyric Acid Production and Improvement of Fermentation Performance with Clostridium Tyrobutyricum. Appl. Microbiol. Biotechnol. 1990, 32, 387–392. DOI: 10.1007/bf00903770.
  • Michel-Savin, D.; Marchal, R.; Vandecasteele, J. P. Butyrate Production in Continuous Culture of Clostridium Tyrobutyricum: Effect of End-Product Inhibition. Appl. Microbiol. Biotechnol. 1990, 33, 127–131. DOI: 10.1007/bf00176512.
  • Michel-Savin, D.; Marchal, R.; Vandecasteele, J. P. Butyric Fermentation: Metabolic Behaviour and Production Performance of Clostridium Tyrobutyricum in a Continuous Culture with Cell Recycle. Appl. Microbiol. Biotechnol. 1990, 34, 172–177. DOI: 10.1007/bf00166775.
  • Fayolle, F.; Marchal, R.; Ballerini, D. Effect of Controlled Substrate Feeding on Butyric Acid Production by Clostridium Tyrobutyricum. J. Ind. Microbiol. 1990, 6, 179–183. DOI: 10.1007/bf01577693.
  • Crabbendam, P. M.; Neijssel, O. M.; Tempest, D. W. Metabolic and Energetic Aspects of the Growth of Clostridium Tyrobutyricum on Glucose in Chemostat Culture. Arch. Microbiol. 1985, 142, 375–382. DOI: 10.1007/bf00491907.
  • Heyndrickx, M. P.; Vos, D. E.; Thibau, B.; Stevens, P.; Deley, J. Effect of Various External Factors on the Fermentative Production of Hydrogen Gas from Glucose by Clostridium Butyricum Strains in Batch Culture. System Appl. Microbiol. 1987, 9, 163–168. DOI: 10.1016/s0723-2020(87)80072-3.
  • Andel, J. G.; Zoutberg, G. R.; Crabbendam, P. M.; Breure, A. M. Glucose Fermentation by Clostridium Butyricum Grown Under a Self Generated Gas Atmosphere in Chemostate Culture. Appl. Microbiol. Biotechnol. 1985, 23, 21–26. DOI: 10.1007/bf02660113.
  • Vandák, D.; Tomáška, M.; Zigová, J.; Šturdík, E. Effect of Growth Supplements and Whey Pretreatment on Butyric Acid Production by Clostridium Butyricum. World J. Microb. Biot. 1995, 11, 363. DOI: 10.1007/bf00367124.
  • Vandák, D.; Telgarský, M.; ŠTurdík, E. Influence of Growth Factor Supplements on Butyric Acid Production from Sucrose by Clostridium Butyricum. Folia Microbiol. 1995, 40, 669–672. DOI: 10.1007/bf02818528.
  • Alam, S.; Stevens, D.; Bajpai, R. Production of Butyric Acid by Batch Fermentation of Cheese Whey with Clostridium Beijerinckii. J. Ind. Microbiol. Biot. 1988, 2, 359–364. DOI: 10.1007/bf01569574.
  • Patel, G. B.; Agnew, B. J. Growth and Butyric Acid Production by Clostridium Populeti. Arch. Microbiol. 1988, 150, 267–271.
  • Canganella, F.; Wiegel, J. Continuous Cultivation of Clostridium Thermobutyricum in a Rotary Fermentor System. J. Ind. Microbiol. Biot. 2000, 24, 7–13. DOI: 10.1038/sj.jim.2900752.
  • Zhu, Y.; Wu, Z. T.; Yang, S. T. Butyric Acid Production from Acid Hydrolysate of Corn Fibre by Clostridium Tyrobutyricum in a Fibrous-Bed Bioreactor. Process Biochem. 2002, 38, 657–666. DOI: 10.1016/s0032-9592(02)00162-0.
  • Zigová, J.; Šturdík, E. J. Advances in Biotechnological Production of Butyric Acid. Ind. Microbiol. Biot. 2000, 24, 153–160. DOI: 10.1038/sj.jim.2900795.
  • Jiang, L.; Wang, J. F.; Liang, S. Z.; Cai, J.; Xu, Z. N.; Cen, P. L.; Yang, S. T.; Li, S. Enhanced Butyric Acid Tolerance and Bioproduction by Clostridium Tyrobutyricum Immobilized in a Fibrous Bed Bioreactor. Biotechnol. Bioeng. 2011, 108, 31–40. DOI: 10.1002/bit.22927.
  • Zhu, Y.; Yang, S. T. Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium Tyrobutyricum. J. Biotechnol. 2004, 110, 143–157. DOI: 10.1016/j.jbiotec.2004.02.006.
  • Mitchell, R. J.; Kim, J. S.; Jeon, B. S.; Sang, B. I. Continuous Hydrogen and Butyric Acid Fermentation by Immobilized Clostridium Tyrobutyricum ATCC 25755: Effects of the Glucose Concentration and Hydraulic Retention Time. Bioresource Technol. 2009, 100, 5352–5355. DOI: 10.1016/j.biortech.2009.05.046.
  • Du, J. J.; McGraw, A.; Lorenz, N.; Beitle, R. R.; Clausen, E. C.; Hestekin, J. A. Continuous Fermentation of Clostridium Tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production. Energies 2012, 52, 835–2848. DOI: 10.3390/en5082835.
  • Song, H.; Eom, M. H.; Lee, S.; Lee, J. L.; Cho, J. H.; Seung, D. Modeling of Batch Experimental Kinetics and Application to Fed-Batch Fermentation of Clostridium Tyrobutyricum for Enhanced Butyric Acid Production. Biochem. Eng. J. 2010, 53, 71–76. DOI: 10.1016/j.bej.2010.09.010.
  • Papoutsakis, E. T.; Meyer, L. Equations and Calculations of Product Yields and Preferred Pathways for Butanediol and Mixed-Acid Fermentations. Biotechnol. Bioeng. 2010, 27, 50–66. DOI: 10.1002/bit.260270108.
  • Cai, G. Q.; Jin, B.; Saint, C.; Monis, P. Metabolic Flux Analysis of Hydrogen Production Network by Clostridium Butyricum W5: Effect of pH and Glucose Concentrations. Int. J. Hydrogen Energy 2010, 35, 6681–6690. DOI: 10.1016/j.ijhydene.2010.04.097.
  • Niu, K.; Zhang, X.; Tan, W. S.; Zhu, M. L. Effect of Culture Conditions on Producing and Uptake Hydrogen Flux of Biohydrogen Fermentation by Metabolic Flux Analysis Method. Bioresource Technol. 2011, 102, 7294–7300. DOI: 10.1016/j.biortech.2011.05.001.
  • Zhang, Y. L.; Yu, M. R.; Yang, S. T. Effect of ptb Knockout on Butyric Acid Fermentation by Clostridium Tyrobutyricum. Biotechnol. Prog. 2012, 28, 52–59.
  • Fu, H. X.; Yu, L.; Lin, M.; Wang, J. F.; Xiu, Z. L.; Yang, S. T. Metabolic Engineering of Clostridium Tyrobutyricum for Enhanced Butyric Acid Production from Glucose and Xylose. Metab. Eng. 2017, 40, 50–58. DOI: 10.1016/j.ymben.2016.12.014.
  • Silva, E. M.; Yang, S. T. Kinetics and Stability of a Fibrous-Bed Bioreactor for Continuous Production of Lactic Acid from Unsupplemented Acid Whey. J. Biotechnol. 1995, 41, 59–70. DOI: 10.1016/0168-1656(95)00059-y.
  • Tang, I. C.; Okos, M. R.; Yang, S. T. Effect of pH and Acetic Acid on Homoacetic Fermentation of Lactase by Clostridium Formicoaceticum. Biotechnol. Bioeng. 1989, 34, 1063–1074. DOI: 10.1002/bit.260340807.
  • Jiang, L.; Song, P.; Zhu, L. Y.; Li, S.; Hu, Y.; Fu, N. H.; Huang, H. Comparison of Metabolic Pathway for Hydrogen Production in Wild-Type and Mutant Clostridium Tyrobutyricum Strain Based on Metabolic Flux Analysis. Int. J. Hydrogen Energy 2013, 38, 2176–2184. DOI: 10.1016/j.ijhydene.2012.11.050.
  • Zhu, Y.; Liu, X. G.; Yang, S. T. Construction and Characterization of pta Gene-Deleted Mutant of Clostridium Tyrobutyricum for Enhanced Butyric Acid Fermentation. Biotechnol. Bioeng. 2005, 90, 154–166. DOI: 10.1002/bit.20354.
  • Liu, X. G.; Yang, S. T. Kinetics of Butyric Acid Fermentation of Glucose and Xylose by Clostridium Tyrobutyricum Wild Type and Mutant. Process Biochem. 2006, 41, 801–808. DOI: 10.1016/j.procbio.2005.10.009.
  • Liu, X. G.; Zhu, Y.; Yang, S. T. Construction and Characterization of ack Deleted Mutant of Clostridium Tyrobutyricum for Enhanced Butyric Acid and Hydrogen Production. Biotechnol. Prog. 2006, 22, 1265–1275. DOI: 10.1021/bp060082g.
  • Lee, J. M.; Jang, Y. S.; Han, M. J.; Kim, J. Y.; Lee, S. Y. Deciphering Clostridium Tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses. Mbio 2016, 7, e00743–16.
  • Al-Hinai, M. A.; Jones, S. W.; Papoutsakis, E. T. The Clostridium Sporulation Programs: Diversity and Preservation of Endospore Differentiation. Microbiol. Mol. Biol. Rev. 2015, 79, 19–37.
  • Liao, C.; Seo, S. O.; Celik, V.; Liu, H. W.; Kong, W. T.; Wang, Y.; Blaschek, H.; Jin, Y. S.; Lu, T. Integrated, Systems Metabolic Picture of Acetone-Butanol-Ethanol Fermentation Fermentation by Clostridium Acetobutylicum. Proc. Natl. Acad. Sci. USA. 2015, 112, 8505–8510. DOI: 10.1073/pnas.1423143112.
  • Zhu, Y.; Yang, S. T. Adaptation of Clostridium Tyrobutyricum for Enhanced Tolerance to Butyric Acid in a Fibrous-Bed Bioreactor. Biotechnol. Prog. 2003, 19, 365–372. DOI: 10.1021/bp025647x.
  • Lewis, V. P.; Yang, S. T. Continuous Propionic Acid Fermentation by Immobilized Propionibacterium Acidipropionici in a Novel Packed-Bed Bioreactor. Biotechnol. Bioeng. 1992, 40, 465–474. DOI: 10.1002/bit.260400404.
  • Suwannakham, S.; Yang, S. T. Enhanced Propionic Acid Fermentation by Propionibacterium Acidipropionici Mutant Obtained by Adaptation in a Fibrous-Bed Bioreactor. Biotechnol. Bioeng. 2005, 91, 325–337. DOI: 10.1002/bit.20473.
  • Wang, J.; Cai, J.; Shi, Z. M.; Huang, L.; Xu, Z. N. Production of Butyric Acid from Casaba Dregs Hydrolysate by immobilized Clostridium Tyrobutyricum in Fibrous-Bed Bioreactor. Food Ferment. Ind. 2012, 38, 21–25.
  • Huang, Y. L.; Wu, Z. T.; Zhang, L. K.; Cheung, C. M.; Yang, S. T. Production of Carboxylic Acids from Hydrolyzed Corn Meal by Immobilized Cell Fermentation in a Fibrous-Bed Bioreactor. Bioresource Technol. 2002, 82, 51–59. DOI: 10.1016/s0960-8524(01)00151-1.
  • Huang, J.; Dai, H. L.; Yan, R.; Wang, P. Enhanced Production of Butyric Acid Through Immobilization of Clostridium Tyrobutyricum in a Novel Inner Disc-Shaped Matrix Bioreactor. Ann. Microbiol. 2016, 66, 121–129. DOI: 10.1007/s13213-015-1088-z.
  • Shi, Z. M.; Huang, L.; Wu, X. T.; Luo, L. P.; Xiao, K. J.; Cai, J.; Xu, Z. N. Long-Term Production of Butyric Acid Through Immobilization of Clostridium Tyrobutyricum in a Moving Fibrous-Bed Bioreactor. J. Chem. Technol. Biot. 2015, 89, 1883–1889. DOI: 10.1002/jctb.4271.
  • Huang, J.; Cai, J.; Wang, J.; Zhu, X. C.; Huang, L.; Yang, S. T.; Xu, Z. N. Efficient Production of Butyric Acid from Jerusalem Artichoke by Immobilized Clostridium Tyrobutyricum in a Fibrous-Bed Bioreactor. Bioresource Technol. 2011, 102, 3923–3926. DOI: 10.1016/j.biortech.2010.11.112.
  • Huang, J.; Zhu, H.; Tang, W.; Wang, P.; Yang, S. T. Butyric Acid Production from Oilseed Rape Straw by Clostridium Tyrobutyricum Immobilized in a Fibrous Bed Bioreactor. Process Biochem. 2016, 51, 1930–1934 . DOI: 10.1016/j.procbio.2016.08.019.
  • Huang, J.; Dai, H. L.; Yan, R.; Wang, P. Butyric Acid Production from Recycled Waste Paper by Immobilized Clostridium Tyrobutyricum in a Fibrous Bed Bioreactor. J. Chem. Technol. Biot. 2016, 91, 1048–1054. DOI: 10.1002/jctb.4680.
  • Song, J. H.; Ventura, J. R. S.; Lee, C. H.; Jahng, D. Butyric Acid Production from Brown Algae Using Clostridium Tyrobutyricum ATCC 25755. Biotechnol. Bioprocess Eng. 2011, 16, 42–49. DOI: 10.1007/s12257-010-0177-x.
  • Wu, Z. T.; Yang, S. T. Extractive Fermentation for Butyric Acid Production from Glucose by Clostridium Tyrobutyricum. Biotechnol. Bioeng. 2003, 82, 93–102. DOI: 10.1002/bit.10542.
  • Du, J. J.; Lorenz, N.; Beitle, R. R.; Hestekin, J. A. Application of Wafer-Enhanced Electrodeionization in a Continuous Fermentation Process to Produce Butyric Acid with Clostridium Tyrobutyricum. Sep. Sci. Technol. 2012, 47, 43–51. DOI: 10.1080/01496395.2011.618170.
  • Du, Y. M.; Jiang, W. Y.; Yu, M. R.; Tang, I. C.; Yang, S. T. Metabolic Process Engineering of Clostridium Tyrobutyricum Δack-adhE2 for Enhanced N-Butanol Production from Glucose: Effects of Methyl Viologen on NADH Availability, Flux Distribution, and Fermentation Kinetics. Biotechnol. Bioeng. 2015, 112, 705–715. DOI: 10.1002/bit.25489.
  • Liu, C. G.; Xue, C.; Lin, Y. H.; Bai, F. W. Redox Potential Control and Applications in Microaerobic and Anaerobic Fermentations. Biotechnol. Adv. 2013, 31, 257–265. DOI: 10.1016/j.biotechadv.2012.11.005.
  • Lütke-Eversloh, T.; Bahl, H. Metabolic Engineering of Clostridium Acetobutylicum: Recent Advances to Improve Butanol Production. Curr. Opin. Biotech. 2011, 22, 634–647. DOI: 10.1016/j.copbio.2011.01.011.
  • Choi, O.; Um, Y.; Sang, B. I. Butyrate Production Enhancement by Clostridium Tyrobutyricum Using Electron Mediators and a Cathodic Electron Donor. Biotechnol. Bioeng. 2012, 109, 2494–2502.
  • Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial Production of Organic Acids: Expanding the Markets. Trends Biotechnol. 2008, 26, 100–108. DOI: 10.1016/j.tibtech.2007.11.006.
  • Liu, X. G.; Zhu, Y.; Yang, S. T. Butyric Acid and Hydrogen Production by Clostridium Tyrobutyricum ATCC 25755 and Mutants. Enzyme Microb. Tech. 2006, 38, 521–528. DOI: 10.1016/j.enzmictec.2005.07.008.
  • Baroi, G. N.; Baumann, I.; Westermann, P.; Gavala, H. N. Butyric Acid Fermentation from Pretreated and Hydrolysed Wheat Straw by an Adapted Clostridium Tyrobutyricum Strain. Microbial Biotechnol. 2015, 8, 874–882. DOI: 10.1111/1751-7915.12304.
  • Ran, F. A.; Hsu, P. D.; Wright, J.; Agarwala, V.; Scott, D. A.; Zhang, F. Genome Engineering Using the Cripr-Cas9 System. Nat. Protoc. 2013, 8, 2281–2308. DOI: 10.1038/nprot.2013.143.
  • Xu, M. M.; Zhao, J. B.; Yu, L.; Tang, I. C.; Xue, C.; Yang, S. T. Engineering Clostridium Acetobutylicum with a Histidine Kinase Knockout for Enhanced N-Butanol Tolerance and Production. Appl. Microbiol. Biot. 2015, 99, 1011–1022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.