246
Views
7
CrossRef citations to date
0
Altmetric
Articles

Characterization of cotton fabric nanocomposites with in situ generated copper nanoparticles for antimicrobial applications

, , , &
Pages 574-581 | Received 22 Dec 2017, Accepted 24 Mar 2018, Published online: 17 Jul 2018

References

  • Charbgoo, F.; Ramezani, M.; Darroudi, M. Bio-sensing Applications of Cerium Oxide Nanoparticles: Advantages and Disadvantages. Biosens. Bioelectron. 2017, 96, 33–43.
  • Lee, W.-H.; Loo, C.-Y.; Traini, D.; Young, P.M. Inhalation of Nanoparticle-based Drug for Lung Cancer Treatment: Advantages and Challenges. Asian J. Pharm. 2015, 10, 481–489.
  • Peng, J.-M.; Lin, J.-C.; Chen, Z.-Y.; Wei, M.-C.; Fu, Y.-X.; Lu, S.-S.; Yu, D.-S.; Zhao, W. Enhanced Antimicrobial Activities of Silver-nanoparticle-decorated Reduced Graphene Nanocomposites against Oral Pathogens. Mater. Sci. Eng. C. 2017, 71, 10–16.
  • Kundu, S.; Das, A.; Basu, A.; Farooque Abdullah, M.; Mukherjee, A. Guar Gum Benzoate Nanoparticle Reinforced Gelatin Films for Enhanced Thermal Insulation, Mechanical and Antimicrobial Properties. Carbohydr. Polym. 2017, 170, 89–98.
  • Eranka Illangakoon, U.; Mahalingam, S.; Wang, K.; Cheong, Y.-K.; Canales, E.; Ren, G.G.; Cloutman-Green, E.; Edirisinghe, M.; Ciric, L. Gyrospun Antimicrobial Nanoparticle Loaded Fibrous Polymeric Filters. Mater. Sci. Eng. C. 2017, 74, 315–324.
  • Raut, A.V.; Yadav, H.M.; Gnanamani, A.; Pushpavanam, S.; Pawar, S.H. Synthesis and Characterization of Chitosan-TiO2: Cu Nanocomposite and Their Enhanced Antimicrobial Activity with Visible Light. Colloids Surf. B. Biointerfaces. 2016, 148, 566–575.
  • Sundararajan, M.; Bama, K.; Bhavani, M.; Jegatheeswaran, S.; Ambika, S.; Sangili, A.; Nithya, P.; Sumathi, R. Obtaining Titanium Dioxide Nanoparticles with Spherical Shape and Antimicrobial Properties Using M. citrifolia Leaves Extract by Hydrothermal Method. J. Photochem. Photobiol. 2017, 171, 117–124.
  • Muthulakshmi, L.; Rajini, N.; Nellaiah, H.; Kathiresan, T.; Jawaid, M.; Varada Rajulu, A. Preparation and Properties of Cellulose Nanocomposite Films with in Situ Generated Copper Nanoparticles Using Terminalia catappa Leaf Extract. Int. J. Biol. Macromol. 2017, 95, 1064–1071.
  • Sadanand, V.; Rajini, N.; Varada Rajulu, A.; Satyanarayana, B. Preparation of Cellulose Composites with in Situ Generated Copper Nanoparticles Using Leaf Extract and Their Properties. Carbohydr. Polym. 2016, 150, 32–39.
  • Sivaranjana, P.; Nagarajan, E.R.; Rajini, N.; Jawaid, M.; Rajulu, A.V. Cellulose Nanocomposite Films with in Situ Generated Silver Nanoparticles Using Cassia alata Leaf Extract as a Reducing Agent. Int. J. Biol. Macromol. 2017, 99, 223–232.
  • Zhang, D.; Chen, L.; Zang, C.; Chen, Y.; Lin, H. Antibacterial Cotton Fabric Grafted with Silver Nanoparticles and Its Excellent Laundering Durability. Carbohydr. Polym. 2013, 92, 2088–2094.
  • Tian, M.; Tang, X.; Qu, L.; Zhu, S.; Guo, X.; Han, G. Robust Ultraviolet Blocking Cotton Fabric Modified with Chitosan/Grapheme, Nanocomposites. Mater. Lett. 2015, 145, 340–343.
  • Svetlichnyi, V.; Shabalina, A.; Lapin, I.; Goncharova, D.; Nemoykina, A. ZnO Nanoparticles Obtained by Pulsed Laser Ablation and Their Composite with Cotton Fabric: Preparation and Study of Antibacterial Activity. Appl. Surf. Sci. 2016, 372, 20–29.
  • Bozaci, E.; Akar, E.; Ozdogan, E.; Demir, A.; Altinisik, A.; Seki, Y. Application of Carboxymethylcellulose Hydrogel Based Silver Nanocomposites on Cotton Fabrics for Antibacterial Property. Carbohydr. Polym. 2015, 134, 128–135.
  • Staneva, D.; Koutzarova, T.; Vertruyen, B.; Vasileva-Tonkova, E.; Grabchev, I. Synthesis, Structural Characterization and Antibacterial Activity of Cotton Fabric Modified with a Hydrogel Containing Barium Hexaferrite Nanoparticles. J. Mol. Struct. 2017, 1127, 74–80.
  • Yang, J.; Xu, H.; Zhang, Zhong, L.Y.; Sui, X.; Mao, Z. Lasting Superhydrophobicity and Antibacterial Activity of Cu Nanoparticles Immobilized on the Surface of Dopamine Modified Cotton Fabrics. Surf. Coat. Technol. 2017, 309, 149–154.
  • Errokh, A.; Ferraria, A.M.; Conceicao, D.S.; Vieira Ferreira, L.F.; Botelho do Rego, A.M.; Rei Vilar, M.; Boufi, S. Controlled Growth of Cu2O Nanoparticles Bound to Cotton Fibres. Carbohydr. Polym. 2016, 141, 229–237.
  • Li, Z.; Meng, J.; Wang, W.; Wang, Z.; Li, M.; Chen, T.; Liu, C.-J. The Room Temperature Electron Reduction for the Preparation of Silver Nanoparticles on Cotton with High Antimicrobial Activity. Carbohydr. Polym. 2017, 161, 270–276.
  • Sadanand, V.; Rajini, N.; Satyanarayana, B.; VaradaRajulu, A. Preparation and Properties of Cellulose/Silver Nanoparticle Composites with in Situ Generated Silver Nanoparticles Using Ocimum sanctum Leaf Extract. Int. J. Polym. Anal. Charact. 2016, 21, 408–416.
  • Murry, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, H.R. Manual of Clinical Microbiology. 6th ed.; ASM Press, Washington, DC, 1995; pp. 15–18.
  • Perez, C.;Pauli, M.;Bazerque, P. An Antibiotic Assay by the Agar Well Diffusion Method. Acta. Biol. Med. Exp. 1990, 15,113–115.
  • Varaprasad, K.; Vimala, K.; Ravindra, S.; Narayana Reddy, N.; Venkata Subba Reddy, G.; Mohana Raju, K. Fabrication of Silver Nanocomposite Films Impregnated with Curcumin for Superior Antibacterial Applications. J. Mater. Sci: Mater. Med. 2011, 22, 1863–1872.
  • Kaplan, D.L. In A. Abe.; Monnerie, L.; Shibaev, V.; Suter, U.W.; Tirrell, D.; Ward, I.M. (Eds.). Biopolymers from Renewable Resources; Springer-Verlag: Berlin, 1998; 55 pp.
  • Alekseeva, O.; Chulovskaya, S.; Bagrovskaya, N.; Parfenyuk, V. Copper Nanoparticle Composites Based on Cellulose Derivatives. Prot. Met. Phys. Chem. Surf. 2011, 47, 215–450.
  • Sedighi, A.; Montazer, M.; Hemmatinejad, N. Copper Nanoparticles on Bleached Cotton Fabric: In Situ Synthesis and Characterization. Cellulose. 2014, 21, 2119–2132.
  • Sadanand, V.; Feng, T.H.; Varada Rajulu, A.; Satyanarayana, B. Preparation and Properties of Low-Cost Cotton Nanocomposite Fabrics with in Situ-generated Copper Nanoparticles by Simple Hydrothermal Method. Int. J. Polym. Anal. Charact. 2017, 22, 587–594.
  • Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A. Synthesis and Antimicrobial Activity of Copper Nanoparticles. Mater. Lett. 2012, 71, 114–116.
  • Campos, F.M.; Couto, J.A.; Hogg, T.A. Influence of Phenolic Acids on Growth and Inactivation of Oenococcus oeni and Lactobacillus hilgardii. J. Appl. Microbiol. 2003, 94, 167–174.
  • Nohynek, L.J.; Alakomi, H.; Kähkönen, M.P.; Heinonen, M.; Ilkka, M.; Puupponen-Pimiä, R.H.; Helander, I.M. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action against Severe Human Pathogens. Nutr. Cancer. 2006, 54, 18–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.