723
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization

, , , , &
Pages 514-521 | Received 18 Jan 2018, Accepted 24 Mar 2018, Published online: 25 Jun 2018

References

  • Arcamone, F.; Cassinelli, G.; Fantini, G.; Grein, A.; Orezzi, P.; Pol, C.; Spalla, C. Adriamycin, 14-Hydroxydaunomycin, a New Antitumor Antibiotic from S. peucetius Var. caesius. Biotechnol. Bioeng. 1969, 11, 1101–1110.
  • Lown, J.W. Anthracycline and Anthraquinone Anticancer Agents: Current Status and Recent Developments. Pharmacol. Ther. 1993, 60, 185–214.
  • Grimm, A.; Madduri, K.; Ali, A.; Hutchinson, C.R. Characterization of the Streptomyces peucetius ATCC 29050 Genes Encoding Doxorubicin Polyketide Synthase. Gene. 1994, 151(1–2), 1–10.
  • Gallo, M.A.; Ward, J.; Hutchinson, C.R. The dnrM Gene in Streptomyces peucetius Contains a Naturally Occurring Frameshift Mutation That Is Suppressed by Another Locus outside of the Daunorubicin-Production Gene Cluster. Microbiology. 1996, 142, 269–275.
  • Otten, S.L.; Gallo, M.A.; Madduri, K.; Liu, X.; Hutchinson, C.R. Cloning and Characterization of the Streptomyces peucetius dnmZUV Genes Encoding Three Enzymes Required for Biosynthesis of the Daunorubicin Precursor Thymidine Diphospho-L-Daunosamine. J. Bacteriol. 1997, 179, 4446–4450.
  • Otten, S.L.; Liu, X.; Ferguson, J.; Hutchinson, C.R. Cloning and Characterization of the Streptomyces peucetius dnrQS Genes Encoding a Daunosamine Biosynthesis Enzyme and a Glycosyl Transferase Involved in Daunorubicin Biosynthesis. J. Bacteriol. 1995, 177, 6688–6692.
  • Lomovskaya, N.; Otten, S.L.; Doikatayama, Y.; Fonstein, L.; Liu, X.C.; Takatsu, T.; Inventisolari, A.; Filippini, S.; Torti, F.; Colombo, A.L. Doxorubicin Overproduction in Streptomyces peucetius: Cloning and Characterization of the dnrU Ketoreductase and dnrV Genes and the doxA Cytochrome P-450 Hydroxylase Gene. J. Bacteriol. 1999, 181(1), 305–318.
  • Dickens, M.L.; Priestley, N.D.; Strohl, W.R. In Vivo and in Vitro Bioconversion of Epsilon-Rhodomycinone Glycoside to Doxorubicin: Functions of DauP, DauK, and DoxA. J. Bacteriol. 1997, 179, 2641–2650.
  • Hutchinson, C.R. Biosynthetic Studies of Daunorubicin and Tetracenomycin C. Chem. Rev. 1997, 97, 2525–2535.
  • Malla, S.; Niraula, N.P.; Liou, K.; Sohng, J.K. Enhancement of Doxorubicin Production by Expression of Structural Sugar Biosynthesis and Glycosyltransferase Genes in Streptomyces peucetius. J Biosci Bioeng. 2009, 108(2), 92–98.
  • Malla, S.; Niraula, N.P.; Liou, K.; Sohng, J.K. Self-resistance Mechanism in Streptomyces peucetius: Overexpression of drrA, drrB and drrC for Doxorubicin Enhancement. Microbiol Res. 2010, 165(4), 259–267.
  • Parajuli, N.; Viet, H.T.; Ishida, K.; Tong, H.T.; Lee, H.C.; Liou, K.; Sohng, J.K. Identification and Characterization of the afsR Homologue Regulatory Gene from Streptomyces peucetius ATCC 27952. Res Microbiol 2005, 156, 707.
  • Vasanthakumar, A.; Kattusamy, K.; Prasad, R. Regulation of Daunorubicin Biosynthesis in Streptomyces peucetius – Feed Forward and Feedback Transcriptional Control. J. Basic Microbiol. 2013, 53, 636–644.
  • Malla, S.; Niraula, N.P.; Liou, K.; Sohng, J.K. Improvement in Doxorubicin Productivity by Overexpression of Regulatory Genes in Streptomyces peucetius. Res. Microbiol. 2010, 161, 109.
  • Lomovskaya, N.; Doi-Katayama, Y.; Filippini, S.; Nastro, C.; Fonstein, L.; Gallo, M.; Colombo, A.L.; Hutchinson, C.R., The Streptomyces peucetius dpsY and dnrX Genes Govern Early and Late Steps of Daunorubicin and Doxorubicin Biosynthesis. J Bacteriol. 1998, 180(9), 2379–2386.
  • Scotti, C.; Hutchinson, C.R. Enhanced Antibiotic Production by Manipulation of the Streptomyces peucetius dnrH and dnmT Genes Involved in Doxorubicin (Adriamycin) Biosynthesis. J. Bacteriol. 1996, 178, 7316.
  • Hutchinson, C.R.; Colombo, A.L. Genetic Engineering of Doxorubicin Production in Streptomyces peucetius: A Review. J Ind Microbiol Biotechnol. 1999, 23, 647.
  • Malla, S.; Niraula, N.P.; Singh, B.; Liou, K.; Sohng, J.K. Limitations in Doxorubicin Production from Streptomyces peucetius. Microbiol Res. 2010, 165(5), 427–435.
  • Rowlands, R.T. Industrial Strain Improvement: Mutagenesis and Random Screening Procedures. Enzyme Microb. Technol. 1984, 6, 3–10.
  • Ma, Y.; Yang, H.; Chen, X.; Sun, B.; Du, G.; Zhou, Z.; Song, J.; Fan, Y.; Shen, W. Significantly Improving the Yield of Recombinant Proteins in Bacillus subtilis by a Novel Powerful Mutagenesis Tool (ARTP): Alkaline α-Amylase as a Case Study. Protein Expr. Purif. 2015, 114, 82–88.
  • Zhang, X.; Zhang, C.; Zhou, Q.Q.; Zhang, X.F.; Wang, L.Y.; Chang, H.B.; Li, H.P.; Oda, Y.; Xing, X.H. Quantitative Evaluation of DNA Damage and Mutation Rate by Atmospheric and Room-Temperature Plasma (ARTP) and Conventional Mutagenesis. Appl. Microbiol. Biotechnol. 2015, 99, 5639–5646.
  • Zhang, X.; Zhang, X.F.; Li, H.P.; Wang, L.Y.; Zhang, C.; Xing, X.H.; Bao, C.Y. Atmospheric and Room Temperature Plasma (ARTP) as a New Powerful Mutagenesis tool. Appl. Microbiol. Biotechnol. 2014, 98, 5387.
  • Ren, F.; Chen, L.; Tong, Q. Highly Improved Acarbose Production of Actinomyces through the Combination of ARTP and Penicillin Susceptible Mutant Screening. World J. Microbiol. Biotechnol. 2017, 33, 16.
  • Ma, Y.; Shen, W.; Chen, X.; Liu, L.; Zhou, Z.; Xu, F.; Yang, H. Significantly Enhancing Recombinant Alkaline Amylase Production in Bacillus subtilis by Integration of a Novel Mutagenesis-Screening Strategy with Systems-Level Fermentation Optimization. J. Biol. Eng. 2016, 10, 13.
  • Cheng, G.; Xu, J.; Xia, X.; Guo, Y.; Xu, K.; Su, C.; Zhang, W. Breeding L-Arginine-Producing Strains by a Novel Mutagenesis Method: Atmospheric and Room Temperature Plasma (ARTP). Prep. Biochem. 2016, 46, 509–516.
  • Wang, L.Y.; Huang, Z.L.; Li, G.; Zhao, H.X.; Xing, X.H.; Sun, W.T.; Li, H.P.; Gou, Z.X.; Bao, C.Y. Novel Mutation Breeding Method for Streptomyces avermitilis Using an Atmospheric Pressure Glow Discharge Plasma. J. Appl. Microbiol. 2010, 108, 851–858.
  • Wang, H.Y.; Zhang, J.; Zhang, Y.J.; Zhang, B.; Liu, C.X.; He, H.R.; Wang, X.J.; Xiang, W.S. Combined Application of Plasma Mutagenesis and Gene Engineering Leads to 5-Oxomilbemycins A3/A4 as Main Components from Streptomyces bingchenggensis. Appl. Microbiol. Biotechnol. 2014, 98, 9703–9712.
  • Lu, Y.; Wang, L.; Ma, K.; Li, G.; Zhang, C.; Zhao, H.; Lai, Q.; Li, H.P.; Xing, X.H. Characteristics of Hydrogen Production of an Enterobacter aerogenes Mutant Generated by a New Atmospheric and Room Temperature Plasma (ARTP). Biochem. Eng. J. 2011, 55, 17–22.
  • Backus, M.P.; Stauffer, J.F. The Production and Selection of a Family of Strains in Penicillium chrysogenum. Mycologia. 1955, 47, 429–463.
  • Peterson, W.H.; Tornqvist, E.G. Penicillin Production by high-yielding strains of Penicillium chrysogenum. Appl. Microbiol. 1956, 4, 277.
  • Carata, E.; Peano, C.; Tredici, S.M.; Ferrari, F.; Talà, A.; Corti, G.; Bicciato, S.; De, B.G.; Alifano, P. Phenotypes and Gene Expression Profiles of Saccharopolyspora erythraea Rifampicin-Resistant (Rif) Mutants Affected in Erythromycin Production. Microb. Cell Fact. 2009, 8, 18.
  • Qin, T.; Song, P.; Wang, X.; Ji, X.; Ren, L.; Huang, H. Protoplast Mutant Selection of Glarea Lozoyensis and Statistical Optimization of Medium for Pneumocandin B0 Yield-up. Biosci. Biotechnol. Biochem. 2016, 80, 2241–2246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.