319
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Cupuaçu (Theobroma grandiflorum) residue and its potential application in the bioremediation of 17-Α-ethinylestradiol as a Pycnoporus sanguineus laccase inducer

ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 541-548 | Received 27 Feb 2018, Accepted 14 Apr 2018, Published online: 25 Jun 2018

References

  • Flick, R.W.; Bencic, D.C.; See, M.J.; Biales, A.D. Sensitivity of the Vitellogenin Assay to Diagnose Exposure of Fathead Minnows to 17-α-Ethynylestradiol. Aquat. Toxicol. 2014, 152, 353–360.
  • Leonard, J.A.; Cope, W.G.; Barnhart, M.C.; Bringolf, R.B. Metabolomic, Behavioral, and Reproductive Effects of the Synthetic Estrogen 17-α-Ethinylestradiol on the Unionid Mussel Lampsilis Fasciola. Aquat. Toxicol. 2014, 150, 103–116.
  • Lloret, L.; Eibes, G.; Lú-Chau, T.A.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Laccase-Catalyzed Degradation of Anti-Inflammatories and Estrogens. Biochem. Eng. J. 2010, 51, 124–131.
  • Riva, S. Laccases: Blue Enzymes for Green Chemistry. Trends Biotechnol. 2006, 24, 219–226.
  • Sun, J.; Guo, N.; Niu, L. L.; Wang, Q. F.; Zang, Y. P.; Zu, Y. G.; Fu, Y. J. Production of Laccase by a New Myrothecium verrucaria MD-R-16 Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and Its Application on Dye Decolorization. Molecules 2017, 22, 673.
  • Yang, J.; Li, W.; Ng, T. B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front. Microbiol. 2017, 8, 1–24.
  • Gupta, V.; Capalash, N.; Gupta, N.; Sharma, P. Bio-Prospecting Laccases in the Bacterial Diversity of Activated Sludge from Pulp and Paper Industry. Indian J. Microbiol. 2017, 57, 75–82.
  • Vallecillos, L.; Sadef, Y.; Borrull, F.; Pocurull, E.; Bester, K. Degradation of Synthetic Fragrances by Laccase-Mediated System. J. Hazard. Mater. 2017, 334, 233–243.
  • Niño-Medina, G.; Gutiérrez-Soto, G.; Urías-Orona, V.; Hernández-Luna, C. E. Effect of Laccase from Trametes maxima CU1 on Physicochemical Quality of Bread. Cogent Food Agric. 2017, 3, 1328762.
  • Baldrian, P. Fungal Laccases – Occurrence and Properties. FEMS Microbiol. Rev. 2006, 30, 215–242.
  • Garcia, T.A.; Santiago, M.F.S.; Ulhoa, C.J. Properties of Laccases Produced by Pycnoporus sanguineus Induced by 2,5-Xylidine. Biotechnol. Lett. 2006, 28, 633–636.
  • Hernández, C.; Da Silva, A.M.F.; Ziarelli, F.; Perraud-Gaime, I.; Gutiérrez-Rivera, B.; García-Pérez, J.A.; Alarcón, E. Laccase Induction by Synthetic Dyes in Pycnoporus sanguineus and Their Possible Use for Sugar Cane Bagasse Delignification. Appl. Microbiol. Biotechnol. 2017, 101, 1189–1201.
  • Marim, R.A.; Oliveira, A.C.C.; Marquezoni, R.S.; Servantes, J.P.R.; Cardoso, B.K.; Linde, G.A.; Colauto, N.B.; Valle, J.S. Use of Sugarcane Molasses by Pycnoporus sanguineus for the Production of Laccase for Dye Decolorization. Genet. Mol. Res. 2016, 15, 1–9.
  • Li, X.; Wang, Y.; Wu, S.; Qiu, L.; Gu, L.; Li, J.; Zhang, B.; Zhong, W. Peculiarities of Metabolism of Anthracene and Pyrene by Laccase‐Producing Fungus Pycnoporus sanguineus H1. Biotechnol. Appl. Biochem. 2014, 61, 549–554.
  • Nair, R.R.; Demarche, P.; Agathos, S.N. Formulation and Characterization of an Immobilized Laccase Biocatalyst and Its Application to Eliminate Organic Micropollutants in Wastewater. N. Biotechnol. 2013, 30, 814–823.
  • Ramírez-Cavazos, L.I.; Junghanns, C.; Ornelas-Soto, N.; Cárdenas-Chávez, D.L.; Hernández-Luna, C.; Demarche, P.; Enaud, E.; García-Morales, R.; Agathos, S.N.; Parra, R. Purification and Characterization of Two Thermostable Laccases from Pycnoporus sanguineus and Potential Role in Degradation of Endocrine Disrupting Chemicals. J. Mol. Catal. B: Enzym. 2014, 108, 32–42.
  • Piscitelli, A.; Giardina, P.; Lettera, V.; Pezzella, C.; Sannia, G.; Faraco, V. Induction and Transcriptional Regulation of Laccases in Fungi. Curr. Genomics. 2011, 12, 104–112.
  • Gonzalez, J.C.; Medina, S.C.; Rodriguez, A.; Osma, J.F.; Alméciga-Díaz, C.J.; Sánchez, O.F. Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes. PLoS One. 2013, 8, e73721.
  • Gutiérrez-Soto, G.; Medina-González, G.E.; García-Zambrano, E.A.; Treviño-Ramírez, J.E.; Hernández-Luna, C.E. Selection and Characterization of a Native Pycnoporus sanguineus Strain as a Lignocellulolytic Extract Producer from Submerged Cultures of Various Agroindustrial Wastes. Bio Resources. 2015, 10, 3564–3576.
  • Pinar, O.; Koçhan, B.; Sayar, N.A.; Karaosmanoğlu, K.; Kazan, D. Enzyme Mixture Production from Pycnoporus sanguineus DMSZ 3024 Using a Lignocellulosic Waste, Hazelnut Husk: A Case Study for Laccase and Cellulase. N. Biotechnol. 2014, 31, S92.
  • Pandey, A.; Soccol, C.R.; Nigam, P.; Soccol, V.T. Biotechnological Potential of Agro-Industrial Residues. I: sugarcane Bagasse. Bioresour. Technol. 2000, 74, 69–80.
  • Said, M.M. Cultural aspects and potential use of cupuaçu (Theobroma grandiflorum Willd Ex Spreng Schum) in the state of Amazonas. PhD thesis, University Federal of Amazonas, Manaus, Brazil, 2011.
  • Beythien, A.; Diemair, W. Laboratoriumsbuch Für Der Lebensmittelchemiker; Verlag von Theodor Steinkopff: Leipzig, 1963.
  • Szklarz, G.D.; Antibus, R.K.; Sinsabaugh, R.L.; Linkins, A.E. Production of Phenoloxidases and Peroxidases by Wood-Rotting Fungi. Mycology. 1989, 81, 234–240.
  • Mayer, A.M.; Staples, R.C. Laccase: New Functions for an Old Enzyme. Phytochemistry. 2002, 60, 551–565.
  • Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428.
  • Gonçalves, M.L.F.C.; Steiner, W. Detection of Laccase Activity in Polyacrylamide Gels after Electrophoresis under Denaturating Conditions. Biotechnol. Tech. 1996, 10, 667–668.
  • Zhang, X.; Chen, P.; Wu, F.; Deng, N.; Liu, J.; Fang, T. Degradation of 17-α-Ethinylestradiol in Aqueous Solution by Ozonation. J. Hazard. Mater. 2006, 133, 291–298.
  • Valle, J.S. 2012. Production, identification and molecular characterization of laccases of Agaricus blazei obtained by fermentation of organic residues. PhD thesis, Federal University of Paraná, Curitiba, Brazil.
  • Collins, P.J.; Dobson, A.D.W. Regulation of Laccase Gene Transcription in Trametes versicolor. Appl. Environ. Microbiol. 1997, 63, 3444–3450.
  • Parenti, A.; Muguerza, E.; Redin Iroz, A.; Omarini, A.; Conde, E.; Alfaro, M.; Castanera, R.; Santoyo, F.; Ramírez, L.; Pisabarro, A.G. Induction of Laccase Activity in the White Rot Fungus Pleurotus ostreatus Using Water Polluted with Wheat Straw Extracts. Bioresour. Technol. 2013, 133, 142–149.
  • Lee, K.M.; Kalyani, D.; Tiwari, M.K.; Kim, T.S.; Dhiman, S.S.; Lee, J.K.; Kim, I.W. Enhanced Enzymatic Hydrolysis of Rice Straw by Removal of Phenolic Compounds Using a Novel Laccase from Yeast Yarrowia lipolytica. Bioresour. Technol. 2012, 123, 636–645.
  • Wang, F.; Hu, J.H.; Guo, C.; Liu, C.Z. Enhanced Laccase Production by Trametes versicolor Using Corn Steep Liquor as Both Nitrogen Source and Inducer. Bioresour. Technol. 2014, 166, 602–605.
  • Mann, J.; Markham, J.L.; Peiris, P.; Spooner-Hart, R.N.; Holford, P.; Nair, N.G. Use of Olive Mill Wastewater as a Suitable Substrate for the Production of Laccase by Cerrena consors. Int. Biodeterior. Biodegrad. 2015, 99, 138–145.
  • Songulashvili, G.; Spindler, D.; Jimenez-Tobon, G.; Jaspers, C.; Kerns, G.; Penninckx, M.J. Production of a High Level of Laccase by Submerged Fermentation at 120-L Scale of Cerrena unicolor C-139 Grown on Wheat Bran. C. R. Biol. 2015, 338, 121–125.
  • Mansur, M.; Suárez, T.; Fernández-Larrea, J.B.; Brizuela, M.A.; González, A.E. Identification of a Laccase Gene Family in the New Lignin-degrading Basidiomycete CECT 20197. Appl. Environ. Microbiol. 1997, 63, 2637–2646.
  • Mathieu, M.; Falenbok, B. The Aspergillus nidulans CREA Protein Mediates Glucose Repression of the Ethanol Regulation at Various Levels through Competition with the ALCR-Specific Transactivator. EMBO. 1994, J.13, 4022–4027.
  • Wong, D.W.S. Structure and Action Mechanism of Lignolytic Enzymes. Appl. Biochem. Biotechnol. 2009, 157, 174–209.
  • Spina, F.; Cordero, C.; Schilirò, T.; Sgorbini, B.; Pignata, C.; Gilli, G.; Bicchi, C.; Varese, G.C. Removal of Micropollutants by Fungal Laccases in Model Solution and Municipal Wastewater: evaluation of Estrogenic Activity and Ecotoxicity. J. Clean. Prod. 2015, 100, 185–194.
  • Nguyen, L.N.; Hai, F.I.; Price, W.E.; Kang, J.; Leusch, F.D.L.; Roddick, F.; Van De Merwe, J.P.; Magram, S.F.; Nghiem, L.D. Laccase Syringaldehyde-Mediated Degradation of Trace Organic Contaminants in an Enzymatic Membrane Reactor: Removal Efficiency and Effluent Toxicity. Bioresour. Techonol. 2016, 200, 477–484.
  • Murugesan, K.; Chang, Y.Y.; Kim, Y.M.; Jong-Rok, J.; Kim, E.J.; Chang, Y.S. Enhanced Transformation of Triclosan by Laccase in the Presence of Redox Mediators. Water Res. 2010, 44, 298–308.
  • Baiocco, P.; Barreca, A.M.; Fabbrini, M.; Galli, C.; Gentili, P. Promoting Laccase Activity towards Non-Phenolic Substrates: A Mechanistic Investigation with Some Laccase-Mediator Systems. Org. Biomol. Chem. 2003, 1, 191–197.
  • Tanaka, T.; Tamura, T.; Ishizaki, Y.; Kawasaki, A.; Kawase, T.; Teraguchi, M.; Taniguchi, M. Enzymatic Treatment of Estrogens and Estrogen Glucororide. J. Environ. Sci. 2009, 21, 731–735.
  • Lloret, L.; Eibes, G.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Application of Response Surface Methodology to Study the Removal of Estrogens in a Laccase-Mediated Continuous Membrane Reactor. Biocatal. Biotransfor. 2013, 31, 197–207.
  • Liu, J.; Cai, Y.; Liao, X.; Huang, Q.; Hao, Z.; Zhang, D. Efficiency of Laccase by Pycnoporus sp. SYBC-L3 in a 65-Liter Air-Lift Reactor for Potential Green Industrial and Environmental Application. J. Clean. Prod. 2013, 39, 154–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.