104
Views
5
CrossRef citations to date
0
Altmetric
Articles

Modeling of growth kinetics for an isolated marine bacterium, Oceanimonas sp. BPMS22 during the production of a trypsin inhibitor

&
Pages 556-563 | Received 31 Jan 2018, Accepted 12 May 2018, Published online: 05 Jun 2018

References

  • Di Cera, E. Serine Proteases. IUBMB life 2009, 61, 510–515.
  • Sabotič, J.; Kos, J. Microbial and Fungal Protease Inhibitors—Current and Potential Applications. Appl. Microbiol. Biotechnol. 2012, 93, 1351–1375.
  • Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Rao, K.B. Protease Inhibitors from Marine Actinobacteria as a Potential Source for Antimalarial Compound. PloS One 2014, 9, e90972.
  • Irving, J.A.; Cabrita, L.D.; Rossjohn, J.; Pike, R.N.; Bottomley, S.P.; Whisstock, J.C. The 1.5 Å Crystal Structure of a Prokaryote Serpin: Controlling Conformational Change in a Heated Environment. Structure 2003, 11, 387–397.
  • Oliveira, J.P.; Salazar, N.; Zani, M.B.; de Souza, L.R.; Passos, S.G.; Sant'Ana, A.M.; de Andrade, R.A.; Marcili, A.; Sperança, M.A.; Puzer, L. Vioserpin, a Serine Protease Inhibitor from Gloeobacter violaceus Possibly Regulated by Heparin. Biochimie 2016, 127, 115–120.
  • Zhang, H.; Fei, R.; Xue, B.; Yu, S.; Zhang, Z.; Zhong, S.; Gao, Y.; Zhou, X. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum. Int. J. Mol. Sci. 2017, 18, 113.
  • Marathe, K.; Kasar, S.; Chaudhari, A.; Maheshwari, V. Purification and Characterization of a Novel Heterodimer Protease Inhibitor from Streptomyces spp. VL J2 with Potential Biopesticidal Activity Against H. armigera. Process Biochem. 2016, 51, 1650–1663.
  • Quintero, D.; Bermudes, D. A Culture-Based Method for Determining the Production of Secreted Protease Inhibitors. J. Microbiol. Methods 2014, 100, 105–110.
  • Mohd-Yusoff, J.; Alias, Z.; Simarani, K. Trypsin Inhibitor Isolated from Streptomyces misionensis UMS1 Has Anti-Bacterial Activities and Activates α-Amylase. Appl. Biochem. Microbiol. 2016, 52, 256–262.
  • Harish, B.S.; Uppuluri, K.B. Microbial Serine Protease Inhibitors and Their Therapeutic Applications. Int. J. Biol. Macromol. 2018, 107, 1373–1387.
  • Seymour, J.L.; Lindquist, R.N.; Dennis, M.S.; Moffat, B.; Yansura, D.; Reilly, D.; Wessinger, M.E.; Lazarus, R.A. ECOTIN Is a Potent Anticoagulant and Reversible Tight-Binding Inhibitor of Factor Xa. Biochemistry 1994, 33, 3949–3958.
  • Wang, C.-I.; Yang, Q.; Craik, C.S. Isolation of a High Affinity Inhibitor of Urokinase-Type Plasminogen Activator by Phage Display of Ecotin. J. Biol. Chem. 1995, 270, 12250–12256.
  • Angelova, L.; Dalgalarrondo, M.; Minkov, I.; Danova, S.; Kirilov, N.; Serkedjieva, J.; Chobert, J.-M.; Haertlé, T.; Ivanova, I. Purification and Characterisation of a Protease Inhibitor from Streptomyces chromofuscus 34-1 with an Antiviral Activity. Biochim. Biophys. Acta 2006, 1760, 1210–1216.
  • Weuster-Botz, D. Experimental Design for Fermentation Media Development: Statistical Design or Global Random Search? J. Biosci. Bioeng. 2000, 90, 473–483.
  • Huang, L. Optimization of a New Mathematical Model for Bacterial Growth. Food Control 2013, 32, 283–288.
  • Managamuri, U.; Vijayalakshmi, M.; Poda, S.; Ganduri, V.R.K.; Babu, R.S. Optimization of Culture Conditions by Response Surface Methodology and Unstructured Kinetic Modeling for Bioactive Metabolite Production by Nocardiopsis litoralis VSM-8. 3 Biotech. 2016, 6, 219.
  • Perni, S.; Andrew, P.W.; Shama, G. Estimating the Maximum Growth Rate from Microbial Growth Curves: Definition Is Everything. Food Microbiol. 2005, 22, 491–495.
  • Tjørve, K.M.; Tjørve, E. The Use of Gompertz Models in Growth Analyses, and New Gompertz-Model Approach: An Addition to the Unified-Richards Family. PloS One 2017, 12, e0178691.
  • Terui, G. Kinetics of Hydrolase Production by Microorganisms. Pure Appl. Chem. 1973, 36, 377–396.
  • Kunitz, M. Crystalline Soybean Trypsin Inhibitor. J. General Physiol. 1947, 30, 291–310.
  • Jin, H.-S.; Park, S.Y.; Kim, K.; Lee, Y.-J.; Nam, G.-W.; Kang, N.J.; Lee, D.-W. Development of a Keratinase Activity Assay Using Recombinant Chicken Feather Keratin Substrates. PloS One 2017, 12, e0172712.
  • Fritz, H.; Tschesche, H.; Fink, E. Proteinase Inhibitors from Boar Seminal Plasma. Methods Enzymol. 1976, 45, 834–847.
  • Wee, K.E.; Yonan, C.R.; Chang, F. A New Broad-Spectrum Protease Inhibitor from the Entomopathogenic Bacterium Photorhabdus luminescens. Microbiology 2000, 146, 3141–3147.
  • Murao, S.; Sato, S.; Muto, N. Isolation of Alkaline Protease Inhibitor Producing Microorganisms. Agr. Biol. Chem. 1972, 36, 1737–1744.
  • Kim, I.-S.; Kim, H.-T.; Lee, H.-S.; Lee, K.-J. Protease Inhibitor Production Using Streptomyces sp. SMF13. J. Microbiol. Biotechnol. 1991, 1, 288–292.
  • Ivanova, E.P.; Onyshchenko, O.M.; Christen, R.; Zhukova, N.V.; Lysenko, A.M.; Shevchenko, L.S.; Buljan, V.; Hambly, B.; Kiprianova, E.A. Oceanimonas smirnovii sp. nov., a Novel Organism Isolated from the Black Sea. Syst. Appl. Microbiol. 2005, 28, 131–136.
  • Ware, A.; Power, N. Modelling Methane Production Kinetics of Complex Poultry Slaughterhouse Wastes Using Sigmoidal Growth Functions. Renewable Energy 2017, 104, 50–59.
  • Zwietering, M.; Jongenburger, I.; Rombouts, F.; Van't Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881.
  • Halmi, M.I.E.; Shukor, M.S.; Masdor, N.A.; Shamaan, N.A.; Shukor, M.Y. Evaluation of Several Mathematical Models for Fitting the Growth of Sludge Microbes on PEG 600. J. Environ. Microbiol. Toxicol. 2015, 3, 1–5.
  • Snipes, M.; Taylor, D.C. Model Selection and Akaike Information Criteria: An Example from Wine Ratings and Prices. Wine Econ. Policy 2014, 3, 3–9.
  • Chauhan, K.; Trivedi, U.; Patel, K.C. Statistical Screening of Medium Components by Plackett–Burman Design for Lactic Acid Production by Lactobacillus sp. KCP01 Using Date Juice. Bioresour. Technol. 2007, 98, 98–103.
  • Bhunia, B.; Basak, B.; Dey, A. A Review on Production of Serine Alkaline Protease by Bacillus spp. J. Biochem. Technol. 2012, 3, 448–457.
  • Sharma, K.M.; Kumar, R.; Panwar, S.; Kumar, A. Microbial Alkaline Proteases: Optimization of Production Parameters and Their Properties. J. Genetic Eng. Biotechnol. 2017, 15, 115–126.
  • Moysés, D.N.; Reis, V.C.B.; Almeida, J.R.M.d.; Moraes, L.M.P.d.; Torres, F.A.G. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int. J. Mol. Sci. 2016, 17, 207.
  • Krispin, O.; Allmansberger, R. The Bacillus subtilis AraE Protein Displays a Broad Substrate Specificity for Several Different Sugars. J. Bacteriol. 1998, 180, 3250–3252.
  • Dodia, M.S.; Joshi, R.H.; Patel, R.K.; Singh, S.P. Characterization and Stability of Extracellular Alkaline Proteases from Halophilic and Alkaliphilic Bacteria Isolated from Saline Habitat of Coastal Gujarat, India. Br. J. Microbiol. 2006, 37, 276–282.
  • Sharma, K.; Kumar, R.; Vats, S.; Gupta, A. Production, Partial Purification and Characterization of Alkaline Protease from Bacillus aryabhattai K3. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 290–298.
  • Qazi, M.; Malik, Z.; Qureshi, G.; Hameed, A.; Ahmed, S. Yeast Extract as the Most Preferable Substrate for Optimized Biosurfactant Production by rhlB Gene Positive Pseudomonas putida SOL-10 Isolate. J. Bioremed. Biodeg. 2013, 4, 2.
  • Nancib, N.; Branlant, C.; Boudrant, J. Metabolic Roles of Peptone and Yeast Extract for the Culture of a Recombinant Strain of Escherichia coli. J. Ind. Microbiol. Biotechnol. 1991, 8, 165–169.
  • Li, X.; Robbins, J.; Taylor, K. The Production of Recombinant Beta-Galactosidase in Escherichia coli in Yeast Extract Enriched Medium. J. Ind. Microbiol. Biotechnol. 1990, 5, 85–93.
  • Ibrahim, S.A.; Bezkorovainy, A. Growth‐Promoting Factors for Bifidobacterium longum. J. Food Sci. 1994, 59, 189–191.
  • Moreira, S.R.; Schwan, R.F.; Carvalho, E.P.d.; Wheals, A.E. Isolation and Identification of Yeasts and Filamentous Fungi from Yoghurts in Brazil. Bra. J. Microbiol. 2001, 32, 117–122.
  • Ramezani, M.; Amoozegar, M.A.; Ventosa, A. Screening and Comparative Assay of Poly-Hydroxyalkanoates Produced by Bacteria Isolated from the Gavkhooni Wetland in Iran and Evaluation of Poly-β-Hydroxybutyrate Production by Halotolerant Bacterium Oceanimonas sp. GK1. Ann. Microbiol. 2015, 65, 517–526.
  • Rishmawi, N.; Ghneim, R.; Kattan, R.; Ghneim, R.; Zoughbi, M.; Abu-Diab, A.; Turkuman, S.; Dauodi, R.; Shomali, I.; Issa, A.E.-R. Survival of Fastidious and Nonfastidious Aerobic Bacteria in Three Bacterial Transport Swab Systems. J. Clin. Microbiol. 2007, 45, 1278–1283.
  • Fitzpatrick, J.; O'keeffe, U. Influence of Whey Protein Hydrolysate Addition to Whey Permeate Batch Fermentations for Producing Lactic Acid. Process Biochem. 2001, 37, 183–186.
  • Zhu, L.; Li, L.; Liang, Z. Comparison of Six Statistical Approaches in the Selection of Appropriate Fish Growth Models. Chin. J. Oceanol. Limnol. 2009, 27, 457–467.
  • Chatterjee, T.; Chatterjee, B.K.; Majumdar, D.; Chakrabarti, P. Antibacterial Effect of Silver Nanoparticles and the Modeling of Bacterial Growth Kinetics Using a Modified Gompertz Model. Biochim. Biophys. Acta 2015, 1850, 299–306.
  • Majeed, Z.; Mansor, N.; Mathialagan, R.; Man, Z. Gompertz Kinetics of Soil Microbial Biomass in Response to Lignin Reinforcing of Urea-Crosslinked Starch Films. Proc. Eng. 2016, 148, 553–560.
  • Numata, K.; Morisaki, K. Screening of Marine Bacteria to Synthesize Polyhydroxyalkanoate from Lignin: Contribution of Lignin Derivatives to Biosynthesis by Oceanimonas doudoroffii. ACS Sustain. Chem. Eng. 2015, 3, 569–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.