472
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L

, , , &
Pages 582-588 | Received 09 Feb 2018, Accepted 12 May 2018, Published online: 05 Jun 2018

References

  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomed. Nanotech. Bio. Med. 2010, 6(2), 257–262.
  • Elechiguerra, J. L.; Burt, J. L.; Morones, J. R.; Camacho-Bragado, A.; Gao, X.; Lara, H. H.; Yacaman, M. J. Interaction of Silver Nanoparticles with HIV-1. J. Nanobiotecg. 2005, 3, 6.
  • Yeo, S. Y.; Lee, H. J.; Jeong, S. H. Preparation of Nanocomposite Fibers for Permanent Antibacterial Effect. J. Mater. Sci. 2003, 38(10), 2143–2147.
  • Gade, A. K.; Bonde, P.; Ingle, A. P.; Marcato, P. D; Duran, N.; Rai, M. K. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles. J. Biobased Mater. Bioenergy 2008, 2(3), 243–247.
  • Mukherjee, P.; Roy, M.; Mandal, B. P.; Dey, G. K.; Mukherjee, P. K.; Ghatak, J.; Tyagi, A. K.; Kale, S. P. Green Synthesis of Highly Stabilized Nanocrystalline Silver Particles by a Non-pathogenic and Agriculturally Important Fungus T. asperellum. Nanotech. 2008, 19(7), 075103.
  • Wei, X. T.; Luo, M. F.; Li, W.; Yang, L. R.; Liang, X. F.; Xu, L.; Kong, P.; Liu, H.Z. Synthesis of Silver Nanoparticles by Solar Irradiation of Cell-free Bacillus amyloliquefaciens Extracts and AgNO3. Biores. Technol. 2012, 103(1), 273–278.
  • Naik, R. R.; Stringer, S. J.; Agarwal, G.; Jones, S. E.; Stone, M. O. Biomimetic Synthesis and Patterning of Silver Nanoparticles. Nat. Mater. 2002, 1, 169–172.
  • Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A. R.; Singh, R. P. Biosynthesis of Silver Nanoparticles using Ocimum sanctum (Tulsi) Leaf Extract and Screening its Antimicrobial Activity. J. Nanopart. Res. 2011, 13(7), 2981–2988.
  • Fayaz, A. M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P. T.; Venketesan, R. Biogenic Synthesis of Silver Nanoparticles and their Synergistic Effect with Antibiotics: a Study against Gram-positive and Gram-negative Bacteria. Nanomed. Nanotech. Bio. Med. 2010, 6(1), 103–109.
  • MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and its Antibacterial Activity against Clinically Isolated Pathogens. Colloid. Surface. B. 2011, 85(2), 360–365.
  • Kathiresan, K.; Manivannan, S.; Nabeel, M.; Dhivya, B. Studies on Silver Nanoparticles Synthesized by a Marine Fungus, Penicillium fellutanum Isolated from Coastal Mangrove Sediment. Colloid. Surface. B. 2009, 71(1), 133–137.
  • Balaji, D.; Basavaraja, S.; Deshpande, R.; Mahesh, D. B.; Prabhakar, B.; Venkataraman, A. Extracellular Biosynthesis of Functionalized Silver Nanoparticles by Strains of Cladosporium cladosporioides Fungus. Colloid. Surface. B. 2009, 68(1), 88–92.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16(10), 2346.
  • Lengke, M. F.; Fleet, M. E.; Southam, G. Biosynthesis of Silver Nanoparticles by Filamentous cyanobacteria from a Silver (I) Nitrate Complex. Langmuir 2007, 23(5), 2694–2699.
  • Musarrat, J.; Dwivedi, S.; Singh, B. R.; Al-Khedhairy, A. A.; Azam, A.; Naqvi, A. Production of Antimicrobial Silver Nanoparticles in Water Extracts of the Fungus Amylomyces rouxii Strain KSU-09. Biores. Technol. 2010, 101(22), 8772–8776.
  • Samundeeswari, A.; Dhas, S. P.; Nirmala, J.; John, S. P.; Mukherjee, A.; Chandrasekaran, N. Biosynthesis of Silver Nanoparticles using Actinobacterium Streptomyces albogriseolus and its Antibacterial Activity. Biotechnol. Appl. Biochem. 2012, 59(6), 503–507.
  • Kalishwaralal, K.; Deepak, V.; Pandian, S. R. K.; Kottaisamy, M.; BarathManiKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of Silver and Gold Nanoparticles using Brevibacterium casei. Colloid. Surface. B. 2010, 77(2), 257–262.
  • Fayaz, A. M.; Girilal, M.; Rahman, M.; Venkatesan, R.; Kalaichelvan, P. T. Biosynthesis of Silver and Gold Nanoparticles using Thermophilic Bacterium Geobacillus stearothermophilus. Process Biochem. 2011, 46(10), 1958–1962.
  • Shahverdi, A. R.; Minaeian, S.; Shahverdi, H. R.; Jamalifar, H.; Nohi, A. A. Rapid Synthesis of Silver Nanoparticles using Culture Supernatants of Enterobacteria: a Novel Biological Approach. Process Biochem. 2007, 42(5), 919–923.
  • Revathy, T.; Saranya, R.; Jayasri, M. A.; Saurav, K.; Suthindhiran, K. Morphological Alterations in Erythrocytes Treated with Silver Nanoparticles Biomineralized by Marine Sediment-derived Bacillus sp. VITSSN01. Ann. Microbiol. 2014, 64(3), 1291–1299.
  • Li, W. J.; Xu, P.; Schumann, P.; Zhang, Y. Q.; Pukall, R.; Xu, L. H.; Stackebrandt, E.; Jiang, C. L. Georgenia ruanii sp. Nov., a Novel Actinobacterium Isolated from Forest Soil in Yunnan (China), and Emended Description of the Genus Georgenia. Int. J. Syst. Evol. Microbiol. 2007, 57, 1424–1428.
  • Saitou, N.; Nei, M. The Neighbor-joining Method: a New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4(4), 406–425.
  • Felsenstein, J. Confidence Limits on Phylogenies: an Approach using the Bootstrap. Evolution 1985, 39(4), 783–791.
  • Kumar, S; Stecher, G; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33(7), 1870–1874.
  • Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16(2), 111–120.
  • Das, V. L.; Thomas, R.; Varghese, R. T.; Soniya, E. V.; Mathew, J.; Radhakrishnan, E. K. Extracellular Synthesis of Silver Nanoparticles by the Bacillus Strain CS 11 Isolated from Iindustrialized Area. 3 Biotech 2014, 4(2), 121–126.
  • Perez, C.; Pauli, M.; Bazerque, P. An Antibacterial Assay by Agar Well Diffusion Method. Acta Biol. Med. Exp. 1990, 15, 113–115.
  • Kalimuthu, K.; Babu, R. S.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of Silver Nanocrystals by Bacillus licheniformis. Colloid. Surface. B. 2008, 65(1), 150–153.
  • Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. pH Dependent Changes in the Optical Properties of Carboxylic Acid Derivatized Silver Colloidal Particles. Colloid. Surface. A. 1997, 127, 221–228.
  • Duran, N.; Priscyla, D.; Marcato, P. D.; Alves, O.; De Souza, G.; Esposito, E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum strains. J. Nanobiotecg. 2005, 3, 8.
  • Priyadarshini, S.; Gopinath, V.; Priyadharsshini, N. M.; MubarakAli, D.; Velusamy, P. Synthesis of Anisotropic Silver Nanoparticles using Novel Strain, Bacillus flexus and its Biomedical Application. Colloid. Surface. B. 2013, 102, 232–237.
  • Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated Synthesis of Silver Nanoparticles and their Activity against Pathogenic Fungi in Combination with Fluconazole. Nanomed. Nanotech. Bio. Med. 2009, 5(4), 382–386.
  • Suresh, A. K.; Pelletier, D. A.; Wang, W.; Broich, M. L.; Moon, J. W.; Gu, B. H.; Allison, D. P.; Joy, D. C.; Phelps, T. J.; Doktycz, M. J. Biofabrication of Discrete Spherical Gold Nanoparticles using the Metal-reducing Bacterium Shewanella oneidensis. Acta Biomater. 2011, 7(5), 2148–2152.
  • Gopinath, V.; Priyadarshini, S.; Priyadharsshini, N. M.; Pandian, K.; Velusamy, P. Biogenic Synthesis of Antibacterial Silver Chloride Nanoparticles using Leaf Extracts of Cissus quadrangularis Linn. Mater. Lett. 2013, 91, 224–227.
  • Kasthuri, J.; Veerapandian, S.; Rajendiran, N. Biological Synthesis of Silver and Gold Nanoparticles using Apiin as Reducing Agent. Colloid. Surface. B. 2009, 68(1), 55–60.
  • Cicek, S.; Gungor, A. A.; Adiguzel, A.; Nadaroglu, H. Biochemical Evaluation and Green Synthesis of Nano Silver using Peroxidase from Euphorbia (Euphorbia amygdaloides) and its Antibacterial Activity. J. Chem. 2015, 486948, 7.
  • Hsueh, Y. H.; Lin, K. S.; Ke, W. J.; Hsieh, C. T.; Chiang, C. L.; Tzou, D. Y.; Liu, S. T. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis are Mediated by Released Ag+ Ions. PLoS ONE 2015, 10(12), e0144306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.