719
Views
12
CrossRef citations to date
0
Altmetric
Articles

Optimization of hyaluronic acid production and its cytotoxicity and degradability characteristics

, , , , , , , , & show all
Pages 610-618 | Received 25 Feb 2018, Accepted 05 May 2018, Published online: 14 Jun 2018

References

  • Kogan, G.; Šoltés, L.; Stern, R.; Gemeiner, R. Hyaluronic Acid: A Natural Biopolymer with a Broad Range of Biomedical and Industrial Applications. Biotechnol. Lett. 2007, 29, 17–25.
  • Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial Production of Hyaluronic Acid: Current State, Challenges, and Perspectives. Microb. Cell Fact. 2011, 10, 99.
  • Chong, B.F.; Blank, L.M.; McLaughlin, R.; Nielsen, L.K. Microbial Hyaluronic Acid Production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351.
  • Sze, J.H.; Brownlie, J.C.; Love, C.A., Biotechnological Production of Hyaluronic Acid: A Mini Review. 3 Biotech. 2016, 6, 67.
  • Fitzpatrick, J.J.; Keeffe, U.O. Influence of Whey Protein Hydrolyzate Addition to Whey Permeate Batch Fermentations for Producing Lactic Acid. Proc. Biochem. 2001, 37, 183–186.
  • Johns, M.R.; Goh, L.T.; Oeggerli, A. Effect of pH, Agitation and Aeration on Hyaluronic Acid Production by Streptococcus zooepidemicus. Biotechnol. Lett. 1994, 16, 507–512.
  • Liu, L; Du, G.; Chen, J.; Zhu, Y.; Wang, M.; Sun, J. Microbial Production of Low Molecular Weight Hyaluronic Acid by Adding Hydrogen Peroxide and Ascorbate in Batch Culture of Streptococcus zooepidemicus. Bioresour. Technol. 2009, 100, 362–367.
  • Wu, T.F.; Huang, W.C.; Chen, Y.H.; Tsay, Y.G.; Chang, C.S. Proteomic Investigation of the Impact of Oxygen on the Protein Profiles of Hyaluronic Acid Producing Streptococcus zooepidemicus. Proteomics. 2009, 9, 4507–4518.
  • Zhou, J.; Yu, X.; Ding, C.; Wang, Z.; Zhou, Q.; Pao, H.; Cai, W. Optimization of Phenol Degradation by Candida tropicalis Z-04 Using Plackett-Burman Design and Response Surface Methodology. J. Env. Sci. 2011, 23, 22–30.
  • Liu, L.; Sun, J.; Zhang, D.; Du, G.; Chen, J.; Xu, W., Culture Conditions Optimization of Hyaluronic Acid Production by Streptococcus zooepidemicus Based on Radial Basis Function Neural Network and Quantum-Behaved Particle Swarm Optimization Algorithm. Enzyme Microb. Technol. 2009, 44, 24–32.
  • Murray P.E.; Lumley, P.J.; Ross, H.F.; Smith, A.J. Tooth Slice Organ Culture for Cytotoxicity Assessment of Dental Materials. Biomaterials. 2000, 21, 1711–1721.
  • Micheels, P. Human Anti-Hyaluronic Acid Antibodies: Is It Possible? Dermatol. Surg. 2001, 27, 185–191.
  • Friedman, P.M.;, Mafong, E.A.; Kauvar, A.N.; Geronemus, R.G. Safety Data of Injectable Nonanimal Stabilized Hyaluronic Acid Gel for Soft Tissue Augmentation. Dermatol. Surg. 2002, 28, 491–494.
  • Goodman, S.B.; Gibon, E.; Pajarinen, J.; Lin, T.H.; Keeney, M.; Ren, P.G.; Nich, C.; Yao, Z.; Egashira, K.; Yang, F.; Konttinen, Y.T. Novel Biological Strategies for Treatment of Wear Particle Induced Periprosthetic Osteolysis of Orthopaedic Implants for Joint Replacement. J. R. Soc. Interface. 2014, 11, 20130962.
  • Brown, B.N.; Ratner, B.D.; Goodman, S.B.; Amar, S.; Badylak, S.F. Macrophage Polarization: An Opportunity for Improved Outcomes in Biomaterials and Regenerative Medicine. Biomaterials. 2012, 33, 3792–3802.
  • Robert, J.S.; Andreina Parisi-Amon, W.; Monty, R. Cytokine Profiling Using Monocytes/Macrophages Cultured on Common Biomaterials with a Range of Surface Chemistries. J. Biomed. Mater. Res. A. 2009, 88, 128–139.
  • Bothner, H.; Waaler, T.; Wik, O. Limiting Viscosity Number and Weight Average Molecular Weight of Hyaluronate Samples Produced by Heat Degradation. Int. J. Biol. Macromol. 1998, 10, 287–297.
  • Tokita, Y.; Okamoto, A. Hydrolytic Degradation of Hyaluronic Acid. Polym. Degrad. Stabil. 1995, 48, 269–273.
  • Hokputsa, S.; Jumel, K.; Alexander, C.; Harding, S.E. A Comparison of Molecular Mass Determination of Hyaluronic Acid Using SEC/MALLS and Sedimentation Equilibrium. Carbohyd. Polym. 2003, 52, 111–117.
  • Mason, T.J.; Lorimer, J.P. Applied Sonochemistry: Uses of Ultrasound in Chemistry and Processing. Newyork: Wiley, 2002.
  • Kim, J.K.; Srinivasan, P.; Kim, J.H.; Choi, J.; Park, H.J.; Byun, M.W.; Lee, J.W. Structural and Antioxidant Properties of Gamma Irradiated Hyaluronic Acid. Food Chem. 2008, 109, 763–770.
  • Liu, L.; Sun, J.; Xu, W.B.; Wang, M.; Du, G.C.; Chen, J. Modeling and Optimization of Microbial Hyaluronic Acid Production by Streptococcus zooepidemicus Using Radial Basis Function Neural Network Coupling Quantum-Behaved Particle Swarm Optimization Algorithm. Biotechnol. Prog. 2009, 25, 1819–1825
  • Aytar, P.; Buruk, Y.; Çabuk, A. Streptococcus Equi ile Hyaluronik Asit Uretiminde Optimum Koşulların Plackett Burman Yöntemi ile Belirlenmesi. TR Elektronik Mikrobiyoloji Dergisi. 2013, 11, 28–35.
  • Cesaretti, B., M.; Luppi, E.; Maccari, F.; Volpi, N. A 96-Well Assay for Uronic Acid Carbazole Reaction. Carbohydr. Polym. 2003, 54, 59–61.
  • Hynes, W.L.; Ferretti, J.J. Assays for Hyaluronidase Activity. Meth. Enzymol. 1994, 235, 606–616.
  • Reissig, J.L.; Strominger, J.L.; Leloir, L.F.A. A Modified Colorimetric Method for the Estimation of N-Acetylamino Sugars. J. Biol. Chem. 1955, 217, 959–966.
  • Zhang, Y.; Shi, L.; Mei, H.; Zhang, J.; Zhu, Y.; Han, X.; Zhu, D. Inflamed Macrophage Microvesicles Induce Insulin Resistance in Human Adipocytes. Nutr. Metab. 2015, 12, 21.
  • Marianne, B.A.; Dan, T.S.; Rosalind, S.L.; Michael, L. Macrophage Differentiation and Polarization on a Decellularized Pericardial Biomaterial. Biomaterials. 2011, 32, 439–449.
  • Pan, N.C.; Vignoli, J.A.; Baldo, C.; Pereira, H.C.B.; Silva, R.S.S.F.; Celligoi, M.A.P.C. Agroindustrial Byproducts for the Production of Hyaluronic Acid by Streptococcus zooepidemicus ATCC 39920. Int. J. Sci. Technol. Res. 2015, 4, 114–118.
  • Jagannath, S.; Ramachandran, K.B. Influence of Competing Metabolic Processes on the Molecular Weight of Hyaluronic Acid Synthesized by Streptococcus zooepidemicus. Biochem. Eng. J. 2010, 48, 148–158.
  • Liu, L.; Wang, M.; Du, G.; Chen, J. Enhanced Hyaluronic Acid Production by a Two-Stage Culture Strategy Based on the Modeling of Batch and Fed-Batch Cultivation of Streptococcus zooepidemicus. Bioresour. Technol. 2008, 99, 8532–8536.
  • Rangaswamy, V.; Jain, D. An Efficient Process for Production and Purification of Hyaluronic Acid from Streptococcus equi subsp. Zooepidemicus. Biotechnol. Lett. 2008, 30, 493–496.
  • Im, H.; Song, J.M.; Kang, J.H.; Kang, D.J. Optimization of Medium Components for High-Molecular-Weight Hyaluronic Acid Production by Streptococcus sp. ID9102 via a Statistical Approach. J. Ind. Microbiol. Biotechnol. 2009, 36, 1337–1344.
  • Armstrong, D.C.; Cooney, M.J.; Johns, M.R. Growth and Amino Acids Requirements of Hyaluronic Acid-Producing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 1997, 47, 309–312.
  • Cooney, M.J.; Goh, L.T.; Lee, P.L.; Johns, M.R. Structured Model Based Analysis and Control of the Hyaluronic Acid Fermentation by Streptococcus zooepidemicus: Physiological Implications of Glucose and Complex-Nitrogen-Limited Growth. Biotechnol. Prog. 1999, 15, 898–910.
  • Pires, A.M.B.; Santana, M.H.A. Metabolic Effects of the Initial Glucose Concentration on Microbial Production of Hyaluronic Acid. Appl. Biochem. Biotechnol. 2010, 162, 1751–1761.
  • Pan, N.C.; Vignoli, J.A.; Baldo, C.; Pereeira, H.C.B.; Silva, R.S.S.F.; Celligoi, M.A.P.C. Effect of Fermentation Conditions on the Production of Hyaluronic Acid by Streptecoccus zooepidemicus ATCC 39920. Acta Sci. Biol. Sci. 2015, 37, 411–417.
  • Khue, N.T.H.; Vo, P.T.M. Study of Complex Nutrients, Temperature and Salts on Hyaluronic Acid Production in Streptococcus zooepidemicus ATCC 43079. J. Appl. Pharm. Sci. 2013, 3, 012–015.
  • Kim, J.H.; Yoo, S.J.; Oh, D.K.; Kweon, Y.G.; Park, D.W.; Lee, C.H.; Gil, G.H. Selection of a Streptococcus equi Mutant and Optimization of Culture Conditions for the Production of High Molecular Weight Hyaluronic Acid. Enzyme Microbial. Technol. 2007, 19, 440–445.
  • Hasegawa, S.; Nagatsuru, M.; Shibutani, M.; Yamamoto, S.; Hasebe, S. Productivity of Concentrated Hyaluronic Acid Using a Maxblend Fermentor. J. Biosci. Bioeng. 1999, 88, 68–71.
  • Patil, K.P.; Kamalja, K.K.; Chaudhaari, B.L. Optimization of Medium Components for Hyaluronic Acid Production by Streptococcus zooepidemicus MTCC3523 Using a Statistical Approach. Carbohyd. Polym. 2011, 86, 1573–1577.
  • Bonde, G.J.; Carlsen, F.E.; Jensen, C.E. Production of Hyaluronic Acid by Pseudomonas aeruginosa. Acta Pharmacol. Toxicol. (Copenh). 1957, 13, 205–212.
  • Daar, E.; King L.; Thorpe, R.B.; Bradley, D.A., Viscosity Changes in Hyaluronic Acid: Irradiation and Rheological Studies. Appl. Radiat. Isot. 2010, 68, 746–750.
  • Heinrichs, O.; Hubner, K.A.; Windemuth, W. The Effect of Radium, Cobalt 60 and X-Rays on the Viscosity of Hyaluronic Acid Solutions. Klin. Wochenschr. 1956, 34, 978–981.
  • Hvidberg, E.; Kvorning, A.; Schmidt, A.; Schou, J. Effect of Ultraviolet Irradiation on Hyaluronic Acid In Vitro. Acta Pharmacol. Tox. 1959, 15, 356–364.
  • Choi, J.; Kim, J.; Kim, J.; Kwoen, D.; Lee, J. Degradation of Hyaluronic Acid Powder by Electron Beam Irradiation, Gamma Ray Irradiation, Microwave Irradiation and Thermal Treatment: A Comparative Study. Carbohyd. Polym. 2010, 79, 1080–1085.
  • Servaty, R.; Schiller, J.; Binder, H.; Arnold, K. Hydration of Polymeric Components of Cartilage — An Infrared Spectroscopic Study on Hyaluronic Acid and Chondroitin Sulfate. Int. J. Biol. Macromol. 2001, 28, 121–127.
  • Boeckel, D.G.; Shinkai, R.S.A.; Grossi, M.L.; Teixeira, E.R. In Vitro Evaluation of Cytotoxicity of Hyaluronic Acid as an Extracellular Matrix on OFCOL II Cells by the MTT Assay. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, e423–e428.
  • Sheehan, K.M.; DeLott, L.B.; West, R.A.; Bonnema, J.D.; DeHeer, D.H. Hyaluronic Acid of High Molecular Weight Inhibits Proliferation and Induces Cell Death in U937 Macrophage Cells. Life Sci. 2004, 75, 3087–3102.
  • Harvima, I.T.; Heikura, H.; Hyttinen, M.; Naukkarinen, A. Hyaluronic Acid Inhibits the Adherence and Growth of Monolayer Keratinocytes but Does Not Affect the Growth of Keratinocyte Epithelium. Arch. Dermatol. Res. 2006, 298, 207–219.
  • Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W. Final Report of the Safety Assessment of Hyaluronic Acid, Potassium Hyaluronate, and Sodium Hyaluronate. Int. J. Toxicol. 2009, 28, 5–67.
  • Schimizzi, A.L.; Massie, J.B.; Murphy, M.; Perry, A.; Kim, C.W.; Garfin, S.R.; Akeson, W.H. High-Molecular-Weight Hyaluronan Inhibits Macrophage Proliferation and Cytokine Release in the Early Wound of a Preclinical Postlaminectomy Rat Model. Spine J. 2006, 6, 550–556.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.