287
Views
29
CrossRef citations to date
0
Altmetric
Articles

Biosynthesis of palladium nanoparticles using Diospyros kaki leaf extract and determination of antibacterial efficacy

&
Pages 629-634 | Received 22 Feb 2018, Accepted 19 May 2018, Published online: 14 Jun 2018

References

  • Horinouchi, S.; Yamanoi, Y.; Yonezawa, T.; Mouri, T.; Nishihara, H. Hydrogen Storage Properties of Isocyanide-Stabilized Palladium Nanoparticles. Langmuir. 2006, 22, 1880–1884.
  • Cheon, Y.E.; Suh, M.P. Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox‐Active Metal–Organic Framework. Angew. Chem. Int. Ed. 2009, 48, 2899–2903.
  • Cheong, S.; Watt, J.D.; Tilley, R.D. Shape Control of Platinum and Palladium Nanoparticles for Catalysis. Nanoscale. 2010, 2, 2045–2053.
  • Bonet, F.; Grugeon, S.; Urbina, R.H.; Tekaia-Elhsissen, K.; Tarascon, J.-M. In Situ Deposition of Silver and Palladium Nanoparticles Prepared by the Polyol Process, and Their Performance as Catalytic Converters of Automobile Exhaust Gases. Solid State Sci. 2002, 4, 665–670.
  • Faurschou, A.; Menné, T.; Johansen, J.D.; Thyssen, J.P. Metal Allergen of the 21st Century—A Review on Exposure, Epidemiology and Clinical Manifestations of Palladium Allergy. Cont. Derm. 2011, 64, 185–195.
  • Veisi, H.; Nasrabadi, N.H.; Mohammadi, P. Biosynthesis of Palladium Nanoparticles as a Heterogeneous and Reusable Nanocatalyst for Reduction of Nitroarenes and Suzuki Coupling Reactions. Appl. Organometal. Chem. 2016, 30, 890–896.
  • Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Palladium (II)‐Catalyzed C–H Activation/C–C Cross‐Coupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115.
  • Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel Platinum–Palladium Bimetallic Nanoparticles Synthesized by Dioscorea bulbifera: Anticancer and Antioxidant Activities. Int. J. Nanomedicine. 2015, 10, 7477.
  • Rosy, K.; Yadav, S.; Agrawal, B.; Oyama, M.; Goyal, R. Graphene Modified Palladium Sensor for Electrochemical Analysis of Norepinephrine in Pharmaceuticals and Biological Fluids. Electrochim. Acta. 2014, 125, 622–629.
  • Mubeen, S.; Zhang, T.; Yoo, B.; Deshusses, M.A.; Myung, N.V. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. J. Phys. Chem. C. 2007, 111, 6321–6327.
  • Nutt, M.O.; Hughes, J.B.; Wong, M.S. Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination. Environ. Sci. Technol. 2005, 39, 1346–1353.
  • Ganaie, S.; Abbasi, T.; Abbasi, S. Biomimetic Synthesis of Platinum Nanoparticles Utilizing a Terrestrial Weed Antigonon Leptopus. Parti. Sci. Technol. 2018, 36, 681–688.
  • Zhang, Z.; Suo, Y.; He, J.; Li, G.; Hu, G.; Zheng, Y. Selective Hydrogenation of Ortho-Chloronitrobenzene over Biosynthesized Ruthenium–Platinum Bimetallic Nanocatalysts. Ind. Eng. Chem. Res. 2016, 55, 7061–7068.
  • Cookson, J. The Preparation of Palladium Nanoparticles. Platin. Met. Rev. 2012, 56, 83–98.
  • Sharma, V.; Kumar, S.; Bahuguna, A.; Gambhir, D.; Sagara, P.S.; Krishnan, V. Plant Leaves as Natural Green Scaffolds for Palladium Catalyzed Suzuki–Miyaura Coupling Reactions. Bioinspir. Biomim. 2016, 12, 016010.
  • Pacardo, D.B.; Sethi, M.; Jones, S.E.; Naik, R.R.; Knecht, M.R. Biomimetic Synthesis of Pd Nanocatalysts for the Stille Coupling Reaction. ACS Nano. 2009, 3, 1288–1296.
  • Supriya, P.; Srinivas, B.T.V.; Chowdeswari, K.; Naidu, N.V.S.; Sreedhar, B. Biomimetic Synthesis of Gum Acacia Mediated Pd-ZnO and Pd-TiO2 – Promising Nanocatalysts for Selective Hydrogenation of Nitroarenes. Mater. Chem. Phys. 2018, 204, 27–36.
  • Roopan, S.M.; Bharathi, A.; Kumar, R.; Khanna, V.G.; Prabhakarn, A. Acaricidal, Insecticidal, and Larvicidal Efficacy of Aqueous Extract of Annona squamosa L. Peel as Biomaterial for the Reduction of Palladium Salts into Nanoparticles. Coll. Surf. B Biointerfaces. 2012, 92, 209–212.
  • Sathishkumar, M.; Sneha, K.; Kwak, I.S.; Mao, J.; Tripathy, S.; Yun, Y.-S. Phyto-Crystallization of Palladium through Reduction Process Using Cinnamom Zeylanicum Bark Extract. J. Hazard. Mater. 2009, 171, 400–404.
  • Petla, R.K.; Vivekanandhan, S.; Misra, M.; Mohanty, A.K.; Satyanarayana, N. Soybean (Glycine max) Leaf Extract Based Green Synthesis of Palladium Nanoparticles. JBNB. 2012, 3, 14–19.
  • Sathishkumar, M.; Sneha, K.; Yun, Y. Palladium Nanocrystal Synthesis Using Curcuma Longa Tuber Extract. Int J Mater Sci. 2009, 4, 11–17.
  • Jia, L.; Zhang, Q.; Li, Q.; Song, H. The Biosynthesis of Palladium Nanoparticles by Antioxidants in Gardenia Jasminoides Ellis: Long Lifetime Nanocatalysts for p-Nitrotoluene Hydrogenation. Nanotechnology. 2009, 20, 385601.
  • Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M. Green Synthesis of Palladium Nanoparticles Using Hippophae Rhamnoides Linn Leaf Extract and Their Catalytic Activity for the Suzuki–Miyaura Coupling in Water. J. Mol. Catal. A Chem. 2015, 396, 297–303.
  • Nadagouda, M.N.; Varma, R.S. Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature Using Coffee and Tea Extract. Green Chem. 2008, 10, 859–862.
  • Narayanan, K.B.; Sakthivel, N. Green Synthesis of Biogenic Metal Nanoparticles by Terrestrial and Aquatic Phototrophic and Heterotrophic Eukaryotes and Biocompatible Agents. Adv. Coll. Interf. Sci. 2011, 169, 59–79.
  • Surendra, T.; Roopan, S.M.; Arasu, M.V.; Al-Dhabi, N.A.; Rayalu, G.M. RSM Optimized Moringa oleifera Peel Extract for Green Synthesis of M. oleifera Capped Palladium Nanoparticles with Antibacterial and Hemolytic Property. J. Photochem. Photobiol. B Biol. 2016, 162, 550–557.
  • Adams, C.P.; Walker, K.A.; Obare, S.O.; Docherty, K.M. Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles. PLoS One. 2014, 9, e85981.
  • Mallikarjuna, K.; Sushma, N.J.; Reddy, B.S.; Narasimha, G.; Raju, B.D.P. Palladium Nanoparticles: Single-Step Plant-Mediated Green Chemical Procedure Using Piper Betle Leaves Broth and Their Anti-Fungal Studies. Int. J. Chem. Anal. Sci. 2013, 4, 14–18.
  • Matsuo, T.; Ito, S. The Chemical Structure of Kaki-Tannin from Immature Fruit of the Persimmon (Diospyros kaki L.). Agric. Biol. Chem. 1978, 42, 1637–1643.
  • Birt, D.F.; Hendrich, S.; Wang, W. Dietary Agents in Cancer Prevention: Flavonoids and Isoflavonoids. Pharmacol. Ther. 2001, 90, 157–177.
  • Sun, L.; Zhang, J.; Lu, X.; Zhang, L.; Zhang, Y. Evaluation to the Antioxidant Activity of Total Flavonoids Extract from Persimmon (Diospyros kaki L.) Leaves. Food Chem. Toxicol. 2011, 49, 2689–2696.
  • Sakanaka, S.; Tachibana, Y.; Okada, Y. Preparation and Antioxidant Properties of Extracts of Japanese Persimmon Leaf Tea (Kakinoha-Cha). Food Chem. 2005, 89, 569–575.
  • Achiwa, Y.; Hibasami, H.; Katsuzaki, H.; Imai, K.; Komiya, T. Inhibitory Effects of Persimmon (Diospyros kaki) Extract and Related Polyphenol Compounds on Growth of Human Lymphoid Leukemia Cells. Biosci. Biotechnol. Biochem. 1997, 61, 1099–1101.
  • Song, J.Y.; Kwon, E.-Y.; Kim, B.S. Biological Synthesis of Platinum Nanoparticles Using Diopyros kaki Leaf Extract. Bioproc. Biosyst. Eng. 2010, 33, 159.
  • Song, J.Y.; Kim, B.S. Biological Synthesis of Bimetallic Au/Ag Nanoparticles Using Persimmon (Diopyros kaki) Leaf Extract. Korean J. Chem. Eng. 2008, 25, 808–811.
  • Perez, C.; Pauli, M.; Bazerque, P. An Antibiotic Assay by the Agar Well Diffusion Method. Acta. Biol. Med. Exp. 1990, 15, 113–115.
  • Kalaiselvi, A.; Roopan, S.M.; Madhumitha, G.; Ramalingam, C.; Elango, G. Synthesis and Characterization of Palladium Nanoparticles Using Catharanthus roseus Leaf Extract and Its Application in the Photo-Catalytic Degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 116–119.
  • Farhadi, K.; Pourhossein, A.; Forough, M.; Molaei, R.; Abdi, A.; Siyami, A. Biosynthesis of Highly Dispersed Palladium Nanoparticles Using Astraglmanna Aqueous Extract. J. Chin. Chem. Soc. 2013, 60, 1144–1149.
  • Sheny, D.; Philip, D.; Mathew, J. Rapid Green Synthesis of Palladium Nanoparticles Using the Dried Leaf of Anacardium Occidentale. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 91, 35–38.
  • Arsiya, F.; Sayadi, M.H.; Sobhani, S. Green Synthesis of Palladium Nanoparticles Using Chlorella vulgaris. Mater. Lett. 2017, 186, 113–115.
  • Ramteke, C.; Chakrabarti, T.; Sarangi, B.K.; Pandey, R.-A. Synthesis of Silver Nanoparticles from the Aqueous Extract of Leaves of Ocimum Sanctum for Enhanced Antibacterial Activity. J. Chem. 2013, 2013, 1.
  • Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana Peel Extract Mediated Novel Route for the Synthesis of Palladium Nanoparticles. Mater. Lett. 2010, 64, 1951–1953.
  • Borah, R.K.; Saikia, H.J.; Mahanta, A.; Das, V.K.; Bora, U.; Thakur, A.J. Biosynthesis of Poly (Ethylene Glycol)-Supported Palladium Nanoparticles Using Colocasia esculenta Leaf Extract and Their Catalytic Activity for Suzuki–Miyaura Cross-Coupling Reactions. RSC Adv. 2015, 5, 72453–72457.
  • Kora, A.J.; Rastogi, L. Green Synthesis of Palladium Nanoparticles Using Gum Ghatti (Anogeissus latifolia) and Its Application as an Antioxidant and Catalyst. Arab. J. Chem. 2015.
  • Manikandan, V.; Velmurugan, P.; Park, J.-H.; Lovanh, N.; Seo, S.-K.; Jayanthi, P.; Park, Y.-J.; Cho, M.; Oh, B.-T. Synthesis and Antimicrobial Activity of Palladium Nanoparticles from Prunus × Yedoensis Leaf Extract. Mater. Lett. 2016, 185, 335–338.
  • Saravanakumar, A.; Peng, M.M.; Ganesh, M.; Jayaprakash, J.; Mohankumar, M.; Jang, H.T. Low-Cost and Eco-Friendly Green Synthesis of Silver Nanoparticles Using Prunus Japonica (Rosaceae) Leaf Extract and Their Antibacterial, Antioxidant Properties. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1165–1171.
  • Rajagopal, T.; Jemimah, I.A.A.; Ponmanickam, P.; Ayyanar, M. Synthesis of Silver Nanoparticles Using Catharanthus Roseus Root Extract and Its Larvicidal Effects. J. Environ. Biol. 2015, 36, 1283.
  • Valli, J.S.; Vaseeharan, B. Biosynthesis of Silver Nanoparticles by Cissus Quadrangularis Extracts. Mater. Lett. 2012, 82, 171–173.
  • Karuppiah, M.; Rajmohan, R. Green Synthesis of Silver Nanoparticles Using Ixora Coccinea Leaves Extract. Mater. Lett. 2013, 97, 141–143.
  • Anacona, J.R.; Bastardo, E.; Camus, J. Manganese (II) and Palladium (II) Complexes Containing a New Macrocyclic Schiff Base Ligand: Antibacterial Properties. Trans. Metal. Chem. 1999, 48, 513–480.
  • Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.