3,438
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Calorimetry for studying the adsorption of proteins in hydrophobic interaction chromatography

, , & ORCID Icon

References

  • Grilo António, L.; Mateus, M.; Aires-Barros Maria, R.; Azevedo Ana, M. Monoclonal Antibodies Production Platforms: An Opportunity Study of a Non‐Protein‐a Chromatographic Platform Based on Process Economics. Biotechnol. J. 2017, 12, 1700260.
  • Kateja, N.; Kumar, D.; Godara, A.; Kumar, V.; Rathore Anurag, S. Integrated Chromatographic Platform for Simultaneous Separation of Charge Variants and Aggregates from Monoclonal Antibody Therapeutic Products. Biotechnol. J. 2017, 12, 1700133.
  • Bo, H.; Wang, J.; Chen, Q.; Shen, H.; Wu, F.; Shao, H.; Huang, S. Using a Single Hydrophobic-Interaction Chromatography to Purify Pharmaceutical-Grade Supercoiled Plasmid DNA from Other Isoforms. Pharm. Biol. 2013, 51, 42–48.
  • Diogo, M.M.; Ribeiro, S.; Queiroz, J.A.; Monteiro, G.A.; Perrin, P.; Tordo, N.; Prazeres, D.M. F. Scale-up of Hydrophobic Interaction Chromatography for the Purification of a DNA Vaccine against Rabies. Biotech. Lett. 2000, 22, 1397–1400.
  • Wilson, M.J.; Haggart, C.L.; Gallagher, S.P.; Walsh, D. Removal of Tightly Bound Endotoxin from Biological Products. J. Biotech. 2001, 88, 67–75.
  • Kumar, V.; Rathore Anurag, S. Mechanistic Modeling Based PAT Implementation for Ion‐Exchange Process Chromatography of Charge Variants of Monoclonal Antibody Products. Biotechnol. J. 2017, 12, 1700286.
  • Baumgartner, K.; Groszhans, S.; Schütz, J.; Suhm, S.; Hubbuch, J. Prediction of Salt Effects on Protein Phase Behavior by HIC Retention and Thermal Stability. J. Pharm. Biomed. Anal. 2016, 128, 216–225.
  • Baumann, P.; Baumgartner, K.; Hubbuch, J. Influence of Binding pH and Protein Solubility on the Dynamic Binding Capacity in Hydrophobic Interaction Chromatography. J. Chromatogr. A 2015, 1396, 77–85.
  • Wang, G.; Hahn, T.; Hubbuch, J. Water on Hydrophobic Surfaces: Mechanistic Modeling of Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2016, 1465, 71–78.
  • Queiroz, J.A.; Tomaz, C.T.; Cabral, J.M.S. Hydrophobic Interaction Chromatography of Proteins. J. Biotech. 2001, 87, 143–159.
  • Lin, F.-Y.; Chen, W.-Y.; Hearn, M.T.W. Thermodynamic Analysis of the Interaction between Proteins and Solid Surfaces: application to Liquid Chromatography. J. Mol. Recognit. 2002, 15, 55–93.
  • Lienqueo, M.E.; Mahn, A.; Salgado, J.C.; Asenjo, J.A. Current Insights on Protein Behaviour in Hydrophobic Interaction Chromatography. J. Chromatogr. B. 2007, 849, 53–68.
  • Mollerup, J.M. The Thermodynamic Principles of Ligand Binding in Chromatography and Biology. J. Biotechnol. 2007, 132, 187–195.
  • Mollerup, J.M. A Review of the Thermodynamics of Protein Association to Ligands, Protein Adsorption, and Adsorption Isotherms. Chem. Eng. Technol. 2008, 31, 864–874.
  • Fekete, S.; Veuthey, J.L.; Beck, A.; Guillarme, D. Hydrophobic Interaction Chromatography for the Characterization of Monoclonal Antibodies and Related Products. J. Pharm. Biomed. Anal. 2016, 130, 3–18.
  • Yu, L.; Zhang, L.; Sun, Y. Protein Behavior at Surfaces: Orientation, Conformational Transitions and Transport. J. Chromatogr. A. 2015, 1382, 117–134.
  • Melander, W.; Horváth, C. Salt Effect on Hydrophobic Interactions in Precipitation and Chromatography of Proteins: An Interpretation of the Lyotropic Series. Arch. Biochem. Biophys. 1977, 183, 200–215.
  • Wu, S.L.; Figueroa, A.; Karger, B.L. Protein Conformational Effects in Hydrophobic Interaction Chromatography: Retention Characterization and the Role of Mobile Phase Additives and Stationary Phase Hydrophobicity. J. Chromatogr. 1986, 371, 3–27.
  • Chen, W.-Y.; Huang, H.-M.; Lin, C.-C.; Lin, F.-Y.; Chan, Y.-C. Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents: Studies by Isothermal Titration Calorimetry and the Van't Hoff Equation. Langmuir. 2003, 19, 9395–9403.
  • Wei, Y.; Yan, Y.; Zhao, J.; Geng, X.; Liu, R. Temperature Effects in Hydrophobic Interaction Chromatography of Proteins. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 439–449.
  • Bonomo, R.; Minim, L.; Coimbra, J.; Fontan, R.; Mendesdasilva, L.; Minim, V. Hydrophobic Interaction Adsorption of Whey Proteins: Effect of Temperature and Salt Concentration and Thermodynamic Analysis. J. Chromatogr. B. 2006, 844, 6–14.
  • Muca, R.; Piątkowski, W.; Antos, D. Altering Efficiency of Hydrophobic Interaction Chromatography by Combined Salt and Temperature Effects. J. Chromatogr. A. 2009, 1216, 8712–8721.
  • Xiao, Y.; Rathore, A.; O’Connell, J.P.; Fernandez, E.J. Generalizing a Two-Conformation Model for Describing Salt and Temperature Effects on Protein Retention and Stability in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2007, 1157, 197–206.
  • Xia, F.; Nagrath, D.; Cramer, S.M. Effect of pH Changes on Water Release Values in Hydrophobic Interaction Chromatographic Systems. J. Chromatogr. A. 2005, 1079, 229–235.
  • Deitcher, R. W.; Rome, J.E.; Gildea, P.A.; O’Connell, J.P.; Fernandez, E.J. A New Thermodynamic Model Describes the Effects of Ligand Density and Type, Salt Concentration and Protein Species in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2010, 1217, 199–208.
  • To, B.C.; Lenhoff, A.M. Hydrophobic Interaction Chromatography of Proteins. I. The Effects of Protein and Adsorbent Properties on Retention and Recovery. J Chromatogr A 2007, 1141, 191–205.
  • Hahn, R.; Deinhofer, K.; Machold, C.; Jungbauer, A. Hydrophobic Interaction Chromatography of Proteins. II. Binding Capacity, Recovery and Mass Transfer Properties. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 790, 99–114.
  • Machold, C.; Deinhofer, K.; Hahn, R.; Jungbauer, A. Hydrophobic Interaction Chromatography of Proteins. I. Comparison of Selectivity. J Chromatogr A . 2002, 972, 3–19.
  • Arakawa, T.; Timasheff, S.N. Preferential Interactions of Proteins with Salts in Concentrated Solutions. Biochemistry. 1982, 21, 6545–6552.
  • Némethy, G.; Scheraga, H.A. Structure of Water and Hydrophobic Bonding in Proteins. I. A Model for the Thermodynamic Properties of Liquid Water. J. Chem. Phys. 1962, 36, 3382–3400.
  • Senczuk, A.M.; Klinke, R.; Arakawa, T.; Vedantham, G.; Yigzaw, Y. Hydrophobic Interaction Chromatography in Dual Salt System Increases Protein Binding Capacity. Biotechnol. Bioeng. 2009, 103, 930–935.
  • Baumgartner, K.; Amrhein, S.; Oelmeier Stefan, A.; Hubbuch, J. The Influence of Mixed Salts on the Capacity of HIC Adsorbers: A Predictive Correlation to the Surface Tension and the Aggregation Temperature. Biotechnol. Progress. 2016, 32, 346–354.
  • Wu, S.-L.; Benedek, K.; Karger, B.L. Thermal Behavior of Proteins in High-Performance Hydrophobic-Interaction Chromatography on-Line Spectroscopic and Chromatographic Characterization. J. Chromatogr. A. 1986, 359, 3–17.
  • Ueberbacher, R.; Haimer, E.; Hahn, R.; Jungbauer, A. Hydrophobic Interaction Chromatography of Proteins V. Quantitative Assessment of Conformational Changes. J. Chromatogr. A. 2008, 1198–1199, 154–163.
  • Deitcher, R.W.; Xiao, Y.; O'Connell, J.P.; Fernandez, E.J. Protein Instability during HIC: evidence of Unfolding Reversibility, and Apparent Adsorption Strength of Disulfide Bond-Reduced Alpha-Lactalbumin Variants. Biotechnol. Bioeng. 2009, 102, 1416–1427.
  • Jungbauer, A.; Machold, C.; Hahn, R. Hydrophobic Interaction Chromatography of Proteins. III. Unfolding of Proteins upon Adsorption. J Chromatogr A. 2005, 1079, 221–228.
  • Hahn, R. Personal communication.
  • Haimer, E.; Tscheliessnig, A.; Hahn, R.; Jungbauer, A. Hydrophobic Interaction Chromatography of Proteins IV: Kinetics of Protein Spreading. J. Chromatogr. A. 2007, 1139, 84–94.
  • Beyer, B.; Jungbauer, A. Conformational Changes of antibodies upon Adsorption onto Hydrophobic Interaction Chromatography Surfaces. Submitted to J. Chromatogr. A 2018, 1552, 60–66.
  • Gekko, K.; Noguchi, H. Compressibility of Globular Proteins in Water at 25.degree.C. J. Phys. Chem. 1979, 83, 2706–2714.
  • Chalikian, T.V.; Totrov, M.; Abagyan, R.; Breslauer, K.J. The Hydration of Globular Proteins as Derived from Volume and Compressibility Measurements: Cross Correlating Thermodynamic and Structural Data. J. Mol. Biol. 1996, 260, 588–603.
  • Muca, R.; Marek, W.; Piątkowski, W.; Antos, D. Influence of the Sample-Solvent on Protein Retention, Mass Transfer and Unfolding Kinetics in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2010, 1217, 2812–2820.
  • Lundström, I. Models of Protein Adsorption on Solid Surfaces. In Surfactants, Adsorption, Surface Spectroscopy and Disperse Systems; Lindman, B., Olofsson, G., Stenius, P. Eds.; Steinkopff, Darmstadt, 1985; pp. 76–82.
  • Jacobson, J.; Melander, W.; Vaisnys, G.; Horvath, C. Kinetic Study on Cis-Trans Proline Isomerization by High-Performance Liquid Chromatography. J. Phys. Chem. 1984, 88, 4536–4542.
  • Hearn, M.T.; Anspach, B. Chemical, Physical, and Biochemical Concepts in Isolation and Purification of Proteins. Bioprocess. Technol. 1990, 9, 17–64.
  • Aguilar, P.P.; Nunes, C.A.; Cascalheira, J.F.; Dias-Cabral, A.C. Kinetics of Angiotensin I Alteration of Conformation on Different Hydrophobic Interaction Chromatographic Surfaces. J. Chromatogr. A 2011, 1218, 8322–8332.
  • Nunes, C.A.; Dias-Cabral, A.C.M. Angiotensin I Retention Behavior on Butyl-Sepharose under Linear Loading Chromatographic Conditions. J. Chromatogr. A 2009, 1216, 2332–2338.
  • Xiao, Y.; Jones, T.T.; Laurent, A.H.; O'Connell, J.P.; Przybycien, T.M.; Fernandez, E.J. Protein Instability during HIC: Hydrogen Exchange Labeling Analysis and a Framework for Describing Mobile and Stationary Phase Effects. Biotechnol. Bioeng. 2007, 96, 80–93.
  • Gospodarek, A.M.; Smatlak, M.E.; O’Connell, J.P.; Fernandez, E.J. Protein Stability and Structure in HIC: Hydrogen Exchange Experiments and COREX Calculations. Langmuir. 2011, 27, 286–295.
  • Tibbs Jones, T.; Fernandez, E.J. [Alpha]-Lactalbumin Tertiary Structure Changes on Hydrophobic Interaction Chromatography Surfaces. J. Colloid Interface Sci. 2003, 259, 27–35.
  • Gospodarek, A.M.; Sun, W.; O’Connell, J.P.; Fernandez, E.J. Structures of Multidomain Proteins Adsorbed on Hydrophobic Interaction Chromatography Surfaces. J. Chromatogr. A. 2014, 1371, 204–219.
  • Fogle, J.L.; O’Connell, J.P.; Fernandez, E.J. Loading, Stationary Phase, and Salt Effects during Hydrophobic Interaction Chromatography: [Alpha]-Lactalbumin Is Stabilized at High Loadings. J. Chromatogr. A. 2006, 1121, 209–218.
  • Deitcher, R.W.; O’Connell, J.P.; Fernandez, E.J. Changes in Solvent Exposure Reveal the Kinetics and Equilibria of Adsorbed Protein Unfolding in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2010, 1217, 5571–5583.
  • Norde, W. Adsorption of Proteins from Solution at the Solid-Liquid Interface. Adv Colloid Interface Sci. 1986, 25, 267–340.
  • van Oss, C.J. Physical Chemistry or Biological Interfaces. In A. Baszkin & W. Norde, editors. Marcel Dekker, Inc., New York, 1999., hardbound, pp. ix +836; $225. J. Disper. Sci. Technol. 2000, 21, 365–366.
  • Zoungrana, T.; Findenegg, G.H.; Norde, W. Structure, Stability, and Activity of Adsorbed Enzymes. J. Colloid Interface Sci. 1997, 190, 437–448.
  • Silberberg, A. Adsorption of Flexible Macromolecules. IV. Effect of Solvent–Solute Interactions, Solute Concentration, and Molecular Weight. J. Chem. Phys. 1968, 48, 2835–2851.
  • Ladisch, M.R. Biosep. Eng., Wiley: New York 2001.
  • Zangi, R. Can Salting-in/Salting-out Ions Be Classified as Chaotropes/Kosmotropes? J Phys Chem B.. 2010, 114, 643–650.
  • Müller, E.; Vajda, J.; Josic, D.; Schröder, T.; Dabre, R.; Frey, T. Mixed Electrolytes in Hydrophobic Interaction Chromatography. J. Sep. Sci. 2013, 36, 1327–1334.
  • Werner, A.; Hasse, H. Experimental Study and Modeling of the Influence of Mixed Electrolytes on Adsorption of Macromolecules on a Hydrophobic Resin. J. Chromatogr. A. 2013, 1315, 135–144.
  • Hackemann, E.; Hasse, H. Influence of Mixed Electrolytes and pH on Adsorption of Bovine Serum Albumin in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2017, 1521, 73–79.
  • Hackemann, E.; Werner, A.; Hasse, H. Influence of Mixed Electrolytes on the Adsorption of Lysozyme, PEG, and PEGylated Lysozyme on a Hydrophobic Interaction Chromatography Resin. Biotechnol. Progress. 2017, 33, 1104–1115.
  • Vailaya, A.; Horváth, C. Retention in Hydrophobic Interaction Chromatography and Dissolution of Nonpolar Gases in Water. Biophys. Chem. 1996, 62, 81–93.
  • Timasheff, S.N. Protein Hydration, Thermodynamic Binding, and Preferential Hydration. Biochemistry. 2002, 41, 13473–13482.
  • Esquibel-King, M.A.; Dias-Cabral, A.C.; Queiroz, J.A.; Pinto, N.G. Study of Hydrophobic Interaction Adsorption of Bovine Serum Albumin under Overloaded Conditions Using Flow Microcalorimetry. J. Chromatogr. A. 1999, 865, 111–122.
  • Dias-Cabral, A.C.; Queiroz, J.A.; Pinto, N.G. Effect of Salts and Temperature on the Adsorption of Bovine Serum Albumin on Polypropylene Glycol-Sepharose under Linear and Overloaded Chromatographic Conditions. J Chromatogr A. 2003, 1018, 137–153.
  • Haynes, C.A.; Sliwinsky, E.; Norde, W. Structural and Electrostatic Properties of Globular Proteins at a Polystyrene-Water Interface. J. Colloid Interface Sci. 1994, 164, 394–409.
  • Haynes, C.A.; Norde, W. Structures and Stabilities of Adsorbed Proteins. J. Colloid Interface Sci. 1995, 169, 313–328.
  • Ueberbacher, R.; Rodler, A.; Hahn, R.; Jungbauer, A. Hydrophobic Interaction Chromatography of Proteins: Thermodynamic Analysis of Conformational Changes. J. Chromatogr. A. 2010, 1217, 184–190.
  • Haidacher, D.; Vailaya, A.; Horváth, C. Temperature Effects in Hydrophobic Interaction Chromatography. Proc. Natl. Acad. Sci. 1996, 93, 2290–2295.
  • Makhatadze, G.I.; Lopez, M.M.; Privalov, P.L. Heat Capacities of Protein Functional Groups. Biophys. Chem. 1997, 64, 93–101.
  • Dias-Cabral, A.C.; Pinto, N.G.; Queiroz, J.A. Studies on Hydrophobic Interaction Adsorption of Bovine Serum Albumin on Polypropylene Glycol-Sepharose under Overloaded Conditions. Sep. Sci. Technol. 2002, 37, 1505–1520.
  • Dias-Cabral, A.C.; Ferreira, A.S.; Phillips, J.; Queiroz, J.A.; Pinto, N.G. The Effects of Ligand Chain Length, Salt Concentration and Temperature on the Adsorption of Bovine Serum Albumin onto Polypropyleneglycol–Sepharose. Biomed. Chromatogr. 2005, 19, 606–616.
  • Rowe, G.E.; Aomari, H.; Chevaldina, T.; Lafrance, M.; St-Arnaud, S. Thermodynamics of Hydrophobic Interaction Chromatography of Acetyl Amino Acid Methyl Esters. J. Chromatogr. A. 2008, 1177, 243–253.
  • Mueller, M.; Loh, M.Q.T.; Tee, D.H.Y.; Yang, Y.; Jungbauer, A. Liquid Formulations for Long-Term Storage of Monoclonal IgGs. Appl. Biochem. Biotechnol. 2013, 169, 1431–1448.
  • Mueller, M.; Loh, M.Q.T.; Tscheliessnig, R.; Tee, D.H.Y.; Tan, E.; Bardor, M.; Jungbauer, A. Liquid Formulations for Stabilizing IgMs during Physical Stress and Long-Term Storage. Pharm. Res. 2013, 30, 735–750.
  • Rodler, A.; Ueberbacher, R.; Hahn, R.; Jungbauer, A. Using Isothermal Titration Calorimetry for Investigation of Protein Conformational Changes Associated with Adsorption in Hydrophobic Interaction Chromatography. J. Sep. Sci. 2018, 4, 3069–3080.
  • Naghibi, H.; Tamura, A.; Sturtevant, J.M. Significant Discrepancies between Van't Hoff and Calorimetric Enthalpies. Proc. Natl. Acad. Sci. 1995, 92, 5597–5599.
  • Horn, J.R.; Russell, D.; Lewis, E.A.; Murphy, K.P. Van't Hoff and Calorimetric Enthalpies from Isothermal Titration Calorimetry: Are There Significant Discrepancies?. Biochemistry. 2001, 40, 1774–1778.
  • Gekko, K.; Hasegawa, Y. Compressibility-Structure Relationship of Globular Proteins. Biochemistry. 1986, 25, 6563–6571.
  • Gill, D.S.; Roush, D.J.; Shick, K.A.; Willson, R.C. Microcalorimetric Characterization of the Anion-Exchange Adsorption of Recombinant Cytochrome b5 and Its Surface-Charge Mutants. J. Chromatogr. A. 1995, 715, 81–93.
  • Chen, J.; Cramer, S.M. Protein Adsorption Isotherm Behavior in Hydrophobic Interaction Chromatography. J. Chromatogr. A. 2007, 1165, 67–77.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.
  • Perry, R.H.; Green, D.W. Perry’s Chemical Engineers’ Handbook, McGraw-Hill 1997.
  • Borrmann, C.; Helling, C.; Lohrmann, M.; Sommerfeld, S.; Strube, J. Phenomena and Modeling of Hydrophobic Interaction Chromatography. Sep. Sci. Technol. 2011, 46, 1289–1305.
  • Lin, F.Y.; Chen, W.Y.; Hearn, M.T. Microcalorimetric Studies on the Interaction Mechanism between Proteins and Hydrophobic Solid Surfaces in Hydrophobic Interaction Chromatography: effects of Salts, Hydrophobicity of the Sorbent, and Structure of the Protein. Anal. Chem. 2001, 73, 3875–3883.
  • Rojas, E.E.G.; dos Reis Coimbra, J.S.; Minim, L.A.; Saraiva, S.H.; da Silva, C.A.S. Hydrophobic Interaction Adsorption of Hen Egg White Proteins Albumin, Conalbumin, and Lysozyme. J. Chromatogr. B. 2006, 840, 85–93.
  • Chen, J.; Sun, Y. Modeling of the Salt Effects on Hydrophobic Adsorption Equilibrium of Protein. J Chromatogr A. 2003, 992, 29–40.
  • Ball, V.; Maechling, C. Isothermal Microcalorimetry to Investigate Non Specific Interactions in Biophysical Chemistry. IJMS. 2009, 10, 3283–3315.
  • Schaaf, P.; Voegel, J.-C.; Senger, B. From Random Sequential Adsorption to Ballistic Deposition: A General View of Irreversible Deposition Processes. J. Phys. Chem. B. 2000, 104, 2204–2214.
  • Xia, F.; Nagrath, D.; Cramer, S.M. Modeling of Adsorption in Hydrophobic Interaction Chromatography Systems Using a Preferential Interaction Quadratic Isotherm. J. Chromatogr. A 2003, 989, 47–54.
  • Mollerup, J.M. Applied Thermodynamics: A New Frontier for Biotechnology. Fluid Phase Equilib. 2006, 241, 205–215.
  • Dieterle, M.; Blaschke, T.; Hasse, H. Microcalorimetric Study of Adsorption of Human Monoclonal Antibodies on Cation Exchange Chromatographic Materials. J. Chromatogr. A. 2008, 1205, 1–9.
  • Blaschke, T.; Varon, J.; Werner, A.; Hasse, H. Microcalorimetric Study of the Adsorption of PEGylated Lysozyme on a Strong Cation Exchange Resin. J. Chromatogr. A. 2011, 1218, 4720–4726.
  • Millitzer, M.; Wenzig, E.; Peukert, W. Adsorption Isotherms and Irreversible Binding of Proteins on Commercially Available Hydrophobic Adsorbents. Chem. Eng. Technol. 2005, i, 756–761.
  • Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319.
  • Korfhagen, J.; Dias-Cabral, A.C.; Thrash, M.E. Nonspecific Effects of Ion Exchange and Hydrophobic Interaction Adsorption Processes. Sep. Sci. Technol. 2010, 45, 2039–2050.
  • Bankston, T.E.; Stone, M.C.; Carta, G. Theory and Applications of Refractive Index-Based Optical Microscopy to Measure Protein Mass Transfer in Spherical Adsorbent Particles. J. Chromatogr. A. 2008, 1188, 242–254.
  • Kaltenbrunner, O.; Jungbauer, A. Adsorption Isotherms in Protein Chromatography Combined Influence of Protein and Salt Concentration on Adsorption Isotherm. J. Chromatogr. A. 1996, 734, 183–194.
  • McCue, J.T.; Engel, P.; Ng, A.; Macniven, R.; Thömmes, J. Modeling of Protein Monomer/Aggregate Purification and Separation Using Hydrophobic Interaction Chromatography. Bioprocess Biosyst. Eng. 2008, 31, 261.
  • Mirani, M.R.; Rahimpour, F. Thermodynamic Modelling of Hydrophobic Interaction Chromatography of Biomolecules in the Presence of Salt. J. Chromatogr. A. 2015, 1422, 170–177.
  • Wiseman, T.; Williston, S.; Brandts, J.F.; Lin, L.-N. Rapid Measurement of Binding Constants and Heats of Binding Using a New Titration Calorimeter. Anal. Biochem. 1989, 179, 131–137.
  • Falconer, R.J.; Collins, B.M. Survey of the Year 2009: Applications of Isothermal Titration Calorimetry. J. Mol. Recognit. 2011, 24, 1–16.
  • Roselin, L.S.; Lin, M.-S.; Lin, P.-H.; Chang, Y.; Chen, W.-Y. Recent Trends and Some Applications of Isothermal Titration Calorimetry in Biotechnology. Biotechnol. J. 2010, 5, 85–98.
  • Norde, W.; Lyklema, J. The Adsorption of Human Plasma Albumin and Bovine Pancreas Ribonuclease at Negatively Charged Polystyrene Surfaces: V. Microcalorimetry. J. Colloid Interface Sci. 1978, 66, 257–302.
  • Pinholt, C.; Bukrinsky, J.T.; Hostrup, S.; Frokjaer, S.; Norde, W.; Jorgensen, L. Influence of PEGylation with Linear and Branched PEG Chains on the Adsorption of Glucagon to Hydrophobic Surfaces. Eur. J. Pharm. Biopharm. 2011, 77, 139–147.
  • Baier, G.; Costa, C.; Zeller, A.; Baumann, D.; Sayer, C.; Araujo, P.H.H.; Mailänder, V.; Musyanovych, A.; Landfester, K. BSA Adsorption on Differently Charged Polystyrene Nanoparticles Using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromol. Biosci. 2011, 11, 628–638.
  • Chen, W.-Y.; Liu, Z.-C.; Lin, P.-H.; Fang, C.-I.; Yamamoto, S. The Hydrophobic Interactions of the Ion-Exchanger Resin Ligands with Proteins at High Salt Concentrations by Adsorption Isotherms and Isothermal Titration Calorimetry. Sep. Purif. Technol. 2007, 54, 212–219.
  • Lira, R.A.; Minim, L.A.; Bonomo, R.C.F.; Minim, V.P.R.; da Silva, L.H.M.; da Silva, M.C.H. Microcalorimetric Study of Adsorption of Glycomacropeptide on Anion-Exchange Chromatography Adsorbent. J. Chromatogr. A. 2009, 1216, 4440–4444.
  • Shi, Q.-H.; Shen, F.-F.; Sun, S. Studies of Lysozyme Binding to Histamine as a Ligand for Hydrophobic Charge Induction Chromatography. Biotechnol. Progr. 2009, 26, 134–141.
  • Kim, K.H.; Lee, E.K. Biothermodynamic Analysis of BSA Adsorption to Alum Gel Using Isothermal Titration Calorimetry. Biotechnol. Bioprocess Eng. 2007, 12, 366.
  • Jones, L.S.; Peek, L.J.; Power, J.P.; Markham, A.; Yazzie, B.; Middaugh, C.R. Effects of Adsorption to Aluminum Salt Adjuvants on the Structure and Stability of Model Protein Antigens. J. Biol. Chem. 2005, 280, 13406–13414.
  • Huang, H.-M.; Lin, F.-Y.; Chen, W.-Y.; Ruaan, R.-C. Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents. J. Colloid Interface Sci. 2000, 229, 600–606.
  • Lin, F.-Y.; Chen, W.-Y.; Sang, L.-C. Microcalorimetric Studies of the Interactions of Lysozyme with Immobilized Metal Ions: Effects of Ion, pH Value, and Salt Concentration. J. Colloid Interface Sci. 1999, 214, 373–379.
  • Tsai, Y.-S.; Lin, F.-Y.; Chen, W.-Y.; Lin, C.-C. Isothermal Titration Microcalorimetric Studies of the Effect of Salt Concentrations in the Interaction between Proteins and Hydrophobic Adsorbents. Colloid Surface A 2002, 197, 111–118.
  • Werner, A.; Blaschke, T.; Hasse, H. Microcalorimetric Study of the Adsorption of PEGylated Lysozyme and PEG on a Mildly Hydrophobic Resin: Influence of Ammonium Sulfate. Langmuir 2012, 28, 11376–11383.
  • Creighton, T.E. Proteins: Structures and Molecular Properties; W.H. Freeman: New York, 1993.
  • Baldwin, R.L. Energetics of Protein Folding. J. Mol. Biol. 2007, 371, 283–301.
  • Rodler, A. unpublished work.
  • Lin, F.-Y.; Chen, C.-S.; Chen, W.-Y.; Yamamoto, S. Microcalorimetric Studies of the Interaction Mechanisms Between Proteins and Q-Sepharose at pH Near the Isoelectric Point (pI): Effects of NaCl Concentration, pH Value, and Temperature. J. Chromatogr. A. 2001, 912, 281–289.
  • Pitt, W.G.; Park, K.; Cooper, S.L. Sequential Protein Adsorption and Thrombus Deposition on Polymeric Biomaterials. J. Colloid Interface Sci. 1986, 111, 343–362.
  • Blandamer, M.J.; Cullis, P.M.; Engberts, J.B.F.N. Titration Microcalorimetry. J. Chem. Soc., Faraday Trans. 1998, 94, 2261–2267.
  • Perkins, T.W.; Mak, D.S.; Root, T.W.; Lightfoot, E.N. Protein Retention in Hydrophobic Interaction Chromatography: modeling Variation with Buffer Ionic Strength and Column Hydrophobicity. J. Chromatogr. A. 1997, 766, 1–14.