306
Views
4
CrossRef citations to date
0
Altmetric
Articles

Characterization of the novel anti-TNF-α single-chain fragment antibodies using experimental and computational approaches

, , , & ORCID Icon
Pages 38-47 | Received 12 Apr 2018, Accepted 26 May 2018, Published online: 08 Feb 2019

References

  • (a) Griffiths, A.D.; Duncan, A.R. Strategies for Selection of Antibodies by Phage Display. Curr. Opin. Biotechnol. 1998, 9, 102–108. (b) Hudson, P.J. Recombinant Antibody Fragments. Curr. Opin. Biotechnol. 1998, 9, 395–402. (c) Hudson, P.J. Recombinant Antibody Constructs in Cancer Therapy. Curr. Opin. Immunol. 1999, 11, 548–557. (d) Little, M.; Kipriyanov, S.M.; Le Gall, F.; Moldenhauer, G. Of Mice and Men: Hybridoma and Recombinant Antibodies. Immunol. Today 2000, 21, 364–370.
  • (a) Jain, S.; Aresu, L.; Comazzi, S.; Shi, J.; Worrall, E.; Clayton, J.; Humphries, W.; Hemmington, S.; Davis, P.; Murray, E.; et al. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine. PLoS ONE. 2016, 11, e0148366. (b) Nelson, A.L. Antibody Fragments: Hope and Hype. mAbs. 2010, 2, 77–83.
  • Saeed, A.F.; Wang, R.; Ling, S.; Wang, S. Antibody Engineering for Pursuing a Healthier Future. Front. Microbiol. 2017, 8, 495.
  • Esposito, E.; Cuzzocrea, S. TNF-Alpha as a Therapeutic Target in Inflammatory Diseases, Ischemia-Reperfusion Injury and Trauma. Curr. Med. Chem. 2009, 16, 3152–3167.
  • Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An Endotoxin Induced Serum Factor That Cuases Necrosis of Tumors. Proc. Natl. Acad. Sci. USA. 1975, 72, 3666–3670.
  • (a) Idriss, H.T.; Naismith, J.H. TNFα and the TNF Receptor Superfamily: Structure-Function Relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. (b) Moss, M.L.; Sklair-Tavron, L.; Nudelman, R. Drug Insight: Tumor Necrosis Factor-Converting Enzyme as a Pharmaceutical Target for Rheumatoid Arthritis. Nat. Clin. Pract. Rheumatol. 2008, 4, 300–309.
  • (a) Keller, M.; Mazuch, J.; Abraham, U.; Eom, G.D.; Herzog, E.D.; Volk, H.D.; Kramer, A.; Maier, B. A Circadian Clock in Macrophages Controls Inflammatory Immune Responses. Proc. Natl. Acad. Sci. USA. 2009, 106, 21407–21412. (b) Scheiermann, C.; Kunisaki, Y.; Frenette, P.S. Circadian Control of the Immune System. Nat. Rev. Immunol. 2013, 13, 190–198. (c) Kong, B.W.; Lee, J.; Bottje, W.G.; Lassiter, K.; Gentles, L.E.; Chandra, Y.G.; Foster, D.N. Microarray Analysis of Early and Late Passage Chicken Embryo Fibroblast Cells. Poultry Sci. 2013, 92, 770–781. (d) Croft, M.; Benedict, C.A.; Ware, C.F. Clinical Targeting of the TNF and TNFR Superfamilies. Nat. Rev. Drug Discov. 2013, 12, 147–168. (e) Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell. 2001, 104, 487–501.
  • (a) Cleynen, I.; Vermeire, S. Paradoxical Inflammation Induced by Anti-TNF Agents in Patients with IBD. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 496–503. (b) Ricart, E.; Ordás, I.; Panés, J. Anti-TNF Antibody Therapy in Crohn's Disease: The Risk of a Switch. Gut. 2012, 61, 169–170.
  • (a) Monaco, C.; Nanchahal, J.; Taylor, P.; Feldmann, M. Anti-TNF Therapy: Past, Present and Future. Int. Immunol. 2015, 27, 55–62. (b) Thalayasingam, N.; Isaacs, J.D. Anti-TNF Therapy. Best Pract. Res. Clin. Rheumatol. 2011, 25, 549–567.
  • (a) Jarrot, P.A.; Kaplanski, G. Anti-TNF-Alpha Therapy and Systemic Vasculitis. Mediators. Inflamm. 2014, 2014, 493593. (b) Elliott, M.J.; Maini, R.N.; Feldmann, M.; Kalden, J.R.; Antoni, C.; Smolen, J.S.; Leeb, B.; Breedveld, F.C.; Macfarlane, J.D.; Bijl, J. A.; et al. Randomised Double-Blind Comparison of Chimeric Monoclonal Antibody to Tumour Necrosis Factor α (cA2) Versus Placebo in Rheumatoid Arthritis. The Lancet. 1994, 344, 1105–1110. (c) Palladino, M.A.; Bahjat, F.R.; Theodorakis, E.A.; Moldawer, L.L. Anti-TNF-α Therapies: The Next Generation. Nat. Rev. Drug Discov. 2003, 2, 736–746. (d) Sandborn, W.J.; Hanauer, S.B.; Katz, S.; Safdi, M.; Wolf, D.G.; Baerg, R.D.; Tremaine, W.J.; Johnson, T.; Diehl, N.N.; Zinsmeister, A.R. Etanercept for Active Crohn's Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Gastroenterology. 2001, 121, 1088–1094. (e) Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor Necrosis Factor Antagonist Mechanisms of Action: A Comprehensive Review. Pharmacol. Therapeut. 2008, 117, 244–279.
  • (a) Gómez-Reino, J.J.; Carmona, L.; Rodríguez Valverde, V.; Mola, E.M.; Montero, M.D. Treatment of Rheumatoid Arthritis with Tumor Necrosis Factor Inhibitors may Predispose to Significant Increase in Tuberculosis Risk: A Multicenter Active-Surveillance Report. Arthrit. Rheumat. 2003, 48, 2122–2127. (b) Lubel, J.S.; Testro, A.G.; Angus, P.W. Hepatitis B Virus Reactivation Following Immunosuppressive Therapy: Guidelines for Prevention and Management. Intern. Med. J. 2007, 37, 705–712. (c) Nyboe Andersen, N.; Pasternak, B.; Friis-Møller, N.; Andersson, M.; Jess, T. Association Between Tumour Necrosis Factor-Α Inhibitors and Risk of Serious Infections in People with Inflammatory Bowel Disease: Nationwide Danish Cohort Study. BMJ. (Clin. Res. Ed.) 2015, 350, h2809.
  • Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; Ho, W.Y.; Alitheen, N.B.M.; Hamid, M. ScFv Antibody: Principles and Clinical Application. Clin. Dev. Immunol. 2012, 2012, 1.
  • Alizadeh, A.A.; Hamzeh-Mivehroud, M.; Dastmalchi, S. Identification of Novel Single Chain Fragment Variable Antibodies Against Tnf-α Using Phage Display Technology. Adv. Pharm. Bull. 2015, 5, 661–666.
  • Alizadeh, A.A.; Hamzeh-Mivehroud, M.; Farajzadeh, M.; Dastmalchi, S. Identification of Novel Peptides Against TNF-α Using Phage Display Technique and in Silico Modeling of Their Modes of Binding. Eur. J. Pharmaceut. Sci. 2017, 96, 490–498.
  • Pace, C.N. Determination and Analysis of Urea and Guanidine Hydrochloride Denaturation Curves. Meth. Enzymol. 1986, 131, 266–280.
  • Alizadeh, A.A.; Hamzeh-Mivehroud, M.; Farajzadeh, M.; Moosavi-Movahedi, A.A.; Dastmalchi, S. A Simple and Rapid Method for Expression and Purification of Functional TNF-Alpha Using GST Fusion System. Curr.Pharm. Biotechnol. 2015, 16, 707–715.
  • Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. Nmr. 1996, 8, 477–486.
  • Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of Protein Models with Three-Dimensional Profiles. Nature. 1992, 356, 83.
  • Tina, K.; Bhadra, R.; Srinivasan, N. PIC: Protein Interactions Calculator. Nucl. Acid. Res. 2007, 35, W473–W476.
  • (a) Smith, G.P.; Petrenko, V.A. Phage Display. Chem. Rev. 1997, 97, 391–410. (b) Azzazy, H.M.; Highsmith, W.E., Jr. Phage Display Technology: Clinical Applications and Recent Innovations. Clin. Biochem. 2002, 35, 425–445. (c) Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage Display: Concept, Innovations, Applications and Future. Biotechnol. Adv. 2010, 28, 849–858.
  • (a) Noren, K.A.; Noren, C.J. Construction of High-Complexity Combinatorial Phage Display Peptide Libraries. Methods. 2001, 23, 169–178. (b) Sidhu, S.S.; Lowman, H.B.; Cunningham, B.C.; Wells, J.A. Phage Display for Selection of Novel Binding Peptides. Meth. Enzymol. 2000, 328, 333–363.
  • Bowie, J.U.; Luthy, R.; Eisenberg, D. A Method to Identify Protein Sequences That Fold into a Known Three-Dimensional Structure. Science. 1991, 253, 164–170.
  • (a) Melo, F.; Devos, D.; Depiereux, E.; Feytmans, E. ANOLEA: A WWW Server to Assess Protein Structures. Proc. Int. Conf. Intel. Syst. Mol. Biol. 1997, 5, 187–190. (b) Melo, F.; Feytmans, E. Assessing Protein Structures with a Non-Local Atomic Interaction Energy. J. Mol. Biol. 1998, 277, 1141–1152.
  • Wallner, B.; Elofsson, A. Can Correct Protein Models Be Identified? Protein Sci. 2003, 12, 1073–1086.
  • Rogozin, I.B.; Solovyov, V.V.; Kolchanov, N.A. Somatic Hypermutagenesis in Immunoglobulin Genes. I. Correlation between Somatic Mutations and Repeats. Somatic Mutation Properties and Clonal Selection. Biochim. Biophys. Acta. 1991, 1089, 175–182.
  • Furrer, E.; Hulmann, V.; Urech, D.M. Intranasal Delivery of ESBA105, a TNF-Alpha-Inhibitory scFv Antibody Fragment to the Brain. J. Neuroimmunol. 2009, 215, 65–72.
  • Athanasios, T.; Brunner, P.M.; Kamran, G.; Claudia, B.; Karin, L.; Martin, R.; Georg, S.; Thomas, L.; Thomas, J. The Single‐Chain anti‐TNF‐α Antibody DLX105 Induces Clinical and Biomarker Responses upon Local Administration in Patients with Chronic Plaque‐Type Psoriasis. Exp. Dermatol. 2016, 25, 428–433.
  • Ottiger, M.; Thiel, M.A.; Feige, U.; Lichtlen, P.; Urech, D.M. Efficient Intraocular Penetration of Topical anti-TNF-Alpha Single-Chain Antibody (ESBA105) to Anterior and Posterior Segment without Penetration Enhancer. Invest. Ophthalmol. Vis. Sci. 2009, 50, 779–786.
  • Urech, D.M.; Feige, U.; Ewert, S.; Schlosser, V.; Ottiger, M.; Polzer, K.; Schett, G.; Lichtlen, P. Anti-Inflammatory and Cartilage-Protecting Effects of an Intra-Articularly Injected Anti-TNF{Alpha} Single-Chain Fv Antibody (ESBA105) Designed for Local Therapeutic Use. Ann. Rheumat. Dis. 2010, 69, 443–449.
  • (a) Antoni, C.; Braun, J. Side Effects of Anti-TNF Therapy: Current Knowledge. Clin. Exp. Rheumatol. 2002, 20, S152–S157. (b) Debandt, M.; Vittecoq, O.; Descamps, V.; Le Lot.X.; Meyer, O. Anti-TNF-?-Induced Systemic Lupus Syndrome. Clin. Rheumatol. 2003, 22, 56–61. (c) Devos, S.A.; Van Den Bossche, N.; De Vos, M.; Naeyaert, J.M. Adverse Skin Reactions to Anti-TNF-Alpha Monoclonal Antibody Therapy. Dermatology. 2003, 206, 388–390. (d) Dias, O.M.; Pereira, D.A.; Baldi, B.G.; Costa, A.N.; Athanazio, R.A.; Kairalla, R.A.; Carvalho, C.R. Adalimumab-Induced Acute Interstitial Lung Disease in a Patient with Rheumatoid Arthritis. J. Bras. Pneumol. 2014, 40, 77–81. (e) Shanahan, F. Anti-TNF Therapy for Crohn's Disease: A Perspective (Infliximab is not the Drug We Have Been Waiting For). Inflamm. Bowel. Dis. 2000, 6, 137–139. (f) Wolf, R.; Matz, H.; Orion, E.; Ruocco, V. Anti-TNF Therapies–The Hope of Tomorrow. Clin. Dermatol. 2002, 20, 522–530.
  • (a) Brunetti, J.; Lelli, B.; Scali, S.; Falciani, C.; Bracci, L.; Pini, A. A Novel Phage-Library-Selected Peptide Inhibits Human TNF-Alpha Binding to its Receptors. Molecules. 2014, 19, 7255–7268. (b) Chirinos-Rojas, C.L.; Steward, M.W.; Partidos, C.D. Use of a Solid-Phase Random Peptide Library to Identify Inhibitors of TNF-Alpha Mediated Cytotoxicity In Vitro. Cytokine. 1997, 9, 226–232. (c) Chirinos-Rojas, C.L.; Steward, M.W.; Partidos, C.D. A Peptidomimetic Antagonist of TNF-Alpha-Mediated Cytotoxicity Identified from a Phage-Displayed Random Peptide Library. J. Immunol. 1998, 161, 5621–5626. (d) Chirinos-Rojas, C.L.; Steward, M.W.; Partidos, C.D. A Phage-Displayed Mimotope Inhibits Tumour Necrosis Factor-Alpha-Induced Cytotoxicity More Effectively Than the free mimotope. Immunology. 1999, 96, 109–113. (e) Guo, H.P.; Luo, H.B.; Liu, Y.J.; Zhu, P.; Fu, N. Screening of Tumor Necrosis Factor-Alpha-Binding Peptides By Phage Display Peptide Library. Di Yi Jun Yi Da Xue Xue Bao. 2002, 22, 597–599. (f) Sclavons, C.; Burtea, C.; Boutry, S.; Laurent, S.; Vander Elst, L.; Muller, R.N. Phage Display Screening for Tumor Necrosis Factor- alpha -Binding Peptides: Detection of Inflammation in a Mouse Model of Hepatitis. Int. J. Pept. 2013, 2013, 348409. (g) Zhang, J.; Zheng, L.; Zhao, A.; Gao, B.; Liu, N.-L.; Wang, F.; Dong, J.; Xin, Z.-T.; Shao, N.-S.; Wang, H.-X.; et al. Identification of Anti-TNFα Peptides with Consensus Sequence. Biochem. Biophys. Res. Commun. 2003, 310, 1181–1187. (h) Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62.
  • Okamoto, T.; Mukai, Y.; Yoshioka, Y.; Shibata, H.; Kawamura, M.; Yamamoto, Y.; Nakagawa, S.; Kamada, H.; Hayakawa, T.; Mayumi, T.; et al. Optimal Construction of Non-Immune scFv Phage Display Libraries from Mouse Bone Marrow and Spleen Established to Select Specific scFvs Efficiently Binding to Antigen. Biochem. Biophys. Res. Commun. 2004, 323, 583–591.
  • Yang, T.; Yang, L.; Chai, W.; Li, R.; Xie, J.; Niu, B. A Strategy for High-Level Expression of a Single-Chain Variable Fragment against TNFα by Subcloning Antibody Variable Regions from the Phage Display Vector pCANTAB 5E into pBV220. Protein. Exp. Purific. 2011, 76, 109–114.
  • Chen, W.; Zhang, J.; Zhang, T.; Li, H.; Wang, W.; Xia, Z.; Wang, M. Improved Isolation of anti-rhTNF-Alpha scFvs from Phage Display Library by Bioinformatics. Mol. Biotechnol. 2009, 43, 20–28.
  • de Wildt, R.M.; Mundy, C.R.; Gorick, B.D.; Tomlinson, I.M. Antibody Arrays for High-Throughput Screening of Antibody–Antigen Interactions. Nat. Biotechnol. 2000, 18, 989–994.
  • Royer, C.A.; Mann, C.J.; Matthews, C.R. Resolution of the Fluorescence Equilibrium Unfolding Profile of Trp Aporepressor Using Single Tryptophan Mutants. Protein Sci. 1993, 2, 1844–1852.
  • Chang, H.; Qin, W.; Li, Y.; Zhang, J.; Lin, Z.; Lv, M.; Sun, Y.; Feng, J.; Shen, B. A Novel Human scFv Fragment against TNF-Alpha from De Novo Design Method. Mol. Immunol. 2007, 44, 3789–3796.
  • Hu, S.; Liang, S.; Guo, H.; Zhang, D.; Li, H.; Wang, X.; Yang, W.; Qian, W.; Hou, S.; Wang, H.; et al. Comparison of the Inhibition Mechanisms of Adalimumab and Infliximab in Treating Tumor Necrosis Factor α-Associated Diseases from a Molecular View. J. Biol. Chem. 2013, 288, 27059–27067.
  • (a) Finlay, W.J.; Shaw, I.; Reilly, J.P.; Kane, M. Generation of High-Affinity Chicken Single-Chain Fv Antibody Fragments for Measurement of the Pseudonitzschia Pungens Toxin Domoic Acid. Appl. Environ. Microbiol. 2006, 72, 3343–3349. (b) Park, S.-G.; Lee, J.-S.; Je, E.-Y.; Kim, I.-J.; Chung, J.-H.; Choi, I.-H. Affinity Maturation of Natural Antibody Using a Chain Shuffling Technique and the Expression of Recombinant Antibodies in Escherichia coli. Biochem. Biophys. Res. Commun. 2000, 275, 553–557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.