646
Views
17
CrossRef citations to date
0
Altmetric
Articles

Higher titer hyaluronic acid production in recombinant Lactococcus lactis

, , &
Pages 734-742 | Received 25 Apr 2018, Accepted 07 Jul 2018, Published online: 28 Sep 2018

References

  • Meyer, K.; Palmer, J. W. The Polysaccharide of the Vitreous Humor. J. Bio. Chem. 1934, 107, 629–634.
  • Boeriu, C. G.; Springer, J.; Kooy, F. K.; van den Broek, L. A.; Eggink, G. Production Methods for Hyaluronan. Int. J. Carbohyd. Chem. 2013, 2013, 1–14.
  • Fraser, J.; Laurent, T.; Laurent, U. Hyaluronan: Its Nature, Distribution, Functions and Turnover. J. Int. Med. 1997, 242, 27–33.
  • Kogan, G.; Šoltés, L.; Stern, R.; Gemeiner, P. Hyaluronic Acid: A Natural Biopolymer with a Broad Range of Biomedical and Industrial Applications. Biotechnol. Lett. 2006, 29, 17–25.
  • Chen, W. Y.; Marcellin, E.; Steen, J. A.; Nielsen, L. K. The Role of Hyaluronic Acid Precursor Concentrations in Molecular Weight Control in Streptococcus Zooepidemicus. Mol. Biotechnol. 2014, 56, 147–156.
  • Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial Production of Hyaluronic Acid: Current State, Challenges, and Perspectives. Microb. Cell Fact. 2011, 10, 99.
  • Hyaluronic Acid Market Analysis by Product (Single Injection, Three Injection, Five Injection), by Application (Dermal Fillers, Osteoarthritis, Ophthalmic, Vesicoureteral Reflux), by Region (North America, Europe, Asia Pacific, Latin America, MEA) and Segment Forecasts to 2025; 978-1-68038-333-1; USA, 2016.
  • Oliveira, J. D.; Carvalho, L. S.; Gomes, A. M. V.; Queiroz, L. R.; Magalhães, B. S.; Parachin, N. S. Genetic Basis for Hyper Production of Hyaluronic Acid in Natural and Engineered Microorganisms. Microb. Cell Fact. 2016, 15, 119.
  • Chong, B. F.; Blank, L. M.; Mclaughlin, R.; Nielsen, L. K. Microbial Hyaluronic Acid production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351.
  • Choi, S.-B.; Lew, L.-C.; Hor, K.-C.; Liong, M.-T. Fe2+ and Cu2+ Increase the Production of Hyaluronic Acid by Lactobacilli via Affecting Different Stages of the Pentose Phosphate Pathway. Appl. Biochem. Biotechnol. 2014, 173, 129–142.
  • Yu, H.; Stephanopoulos, G. Metabolic Engineering of Escherichia coli for Biosynthesis of Hyaluronic Acid. Metab. Eng. 2008, 10, 24–32.
  • Mao, Z.; Shin, H.-D.; Chen, R. A Recombinant E. coli Bioprocess for Hyaluronan Synthesis. Appl. Microbiol. Biotechnol. 2009, 84, 63.
  • Chien, L.-J.; Lee, C.-K. Hyaluronic Acid Production by Recombinant Lactococcus lactis. Appl. Microbiol. Biotechnol. 2007, 77, 339–346.
  • Prasad, S. B.; Ramachandran, K.; Jayaraman, G. Transcription Analysis of Hyaluronan Biosynthesis Genes in Streptococcus Zooepidemicus and Metabolically Engineered Lactococcus lactis. Appl. Microbiol. Biotechnol. 2012, 94, 1593–1607.
  • Widner, B.; Behr, R.; Von Dollen, S.; Tang, M.; Heu, T.; Sloma, A.; Sternberg, D.; DeAngelis, P. L.; Weigel, P. H.; Brown, S. Hyaluronic Acid Production in Bacillus subtilis. App. Env. Microbiol. 2005, 71, 3747–3752.
  • Chien, L. J.; Lee, C. K. Enhanced Hyaluronic Acid Production in Bacillussubtilis by Coexpressing Bacterial Hemoglobin. Biotechnol. Prog. 2007, 23, 1075–1022.
  • Jia, Y.; Zhu, J.; Chen, X.; Tang, D.; Su, D.; Yao, W.; Gao, X. Metabolic Engineering of Bacillus subtilis for the Efficient Biosynthesis of Uniform Hyaluronic Acid with Controlled Molecular Weights. Biores. Tech. 2013, 132, 427–431.
  • Mao, Z.; Chen, R. R. Recombinant Synthesis of Hyaluronan by Agrobacterium sp. Biotechnol. Prog. 2007, 23, 1038–1042.
  • Cheng, F.; Gong, Q.; Yu, H.; Stephanopoulos, G. High‐Titer Biosynthesis of Hyaluronic Acid by Recombinant Corynebacterium Glutamicum. Biotech. J. 2016, 11, 574–584.
  • De Ruyter, P.; Kuipers, O. P.; De Vos, W. M. Controlled Gene Expression Systems for Lactococcus lactis with the Food-Grade Inducer Nisin. App. Env. Microbiol. 1996, 62, 3662–3667.
  • de Vos, W. M. Gene Expression Systems for Lactic Acid Bacteria. Curr. Opin. Microbiol. 1999, 2, 289–295.
  • Maguin, E.; Prevost, H.; Ehrlich, S. D.; Gruss, A. Efficient Insertional Mutagenesis in Lactococci and Other Gram-Positive Bacteria. J. Bacteriol. 1996, 178, 931–935.
  • Mierau, I.; Leij, P.; Van Swam, I.; Blommestein, B.; Floris, E.; Mond, J.; Smid, E. J. Industrial-Scale Production and Purification of a Heterologous Protein in Lactococcus lactis Using the Nisin-Controlled Gene Expression System NICE: The Case of Lysostaphin. Microb. Cell Fact. 2005, 4, 15.
  • Chauhan, A. S.; Badle, S. S.; Ramachandran, K.; Jayaraman, G. The P170 Expression System Enhances Hyaluronan Molecular Weight and Production in Metabolically-Engineered Lactococcus lactis. Biochem. Eng. J. 2014, 90, 73–78.
  • Mierau, I.; Kleerebezem, M. 10 Years of the Nisin-Controlled Gene Expression System (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2005, 68, 705–717.
  • Liu, L.; Wang, M.; Du, G.; Chen, J. Enhanced Hyaluronic Acid Production of Streptococcus Zooepidemicus by an Intermittent Alkaline‐Stress Strategy. Lett. Appl. Microbiol. 2008, 46, 383–388.
  • Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual. Cold Spring 798 Harbor Laboratory Press. Cold Spring Harbor, NY: 2001.
  • Holo, H.; Nes, I. F. Transformation of Lactococcus by Electroporation. Methods Mol. Biol. 1995, 47, 195–199.
  • MoBiTec. NICE® Expression System Handbook.Germany: MoBiTec GmbH: 2015.
  • Jeong, E.; Shim, W. Y.; Kim, J. H. Metabolic Engineering of Pichia pastoris for Production of Hyaluronic Acid with High Molecular Weight. J. Biotech. 2014, 185, 28–36.
  • Bitter, T.; Muir, H. M. A Modified Uronic Acid Carbazole Reaction. Anal. Biochem. 1962, 4, 330–334.
  • Prasad, S. B.; Jayaraman, G.; Ramachandran, K. Hyaluronic Acid Production Is Enhanced by the Additional Co-Expression of UDP-Glucose Pyrophosphorylase in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2010, 86, 273–283.
  • Yu, M.; Jambhrunkar, S.; Thorn, P.; Chen, J.; Gu, W.; Yu, C. Hyaluronic Acid Modified Mesoporous Silica Nanoparticles for Targeted Drug Delivery to CD44-Overexpressing Cancer Cells. Nanoscale 2013, 5, 178–183.
  • Kaur, M.; Jayaraman, G. Hyaluronan Production and Molecular Weight is Enhanced in Pathway-Engineered Strains of Lactate Dehydrogenase-Deficient Lactococcus lactis. Metabol. Eng. Communicat. 2016, 3, 15–23.
  • Sheng, J.; Ling, P.; Zhu, X.; Guo, X.; Zhang, T.; He, Y.; Wang, F. Use of Induction Promoters to Regulate Hyaluronan Synthase and UDP‐Glucose‐6‐Dehydrogenase of Streptococcus Zooepidemicus Expression in Lactococcus lactis: A Case Study of the Regulation Mechanism of Hyaluronic Acid Polymer. J. App. Microbiol. 2009, 107, 136–144.
  • Chandrapati, S.; O'Sullivan, D. J. Nisin Independent Induction of the nisA Promoter in Lactococcus lactis during Growth in Lactose or Galactose. FEMS Microbiol. Lett. 1999, 170, 191–198.
  • Sheng, J.; Ling, P.; Wang, F. Constructing a Recombinant Hyaluronic Acid Biosynthesis Operon and Producing Food-Grade Hyaluronic Acid in Lactococcus lactis. J. Ind. Microbiol. Biotechnol. 2015, 42, 197–206.
  • Stephanopoulos, G. Challenges in Engineering Microbes for Biofuels Production. Science 2007, 315, 801–804.
  • Duan, X.-J.; Yang, L.; Zhang, X.; Tan, W.-S. Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid. J. Microbiol. Biotechnol. 2008, 18, 718–724.
  • Hmar, R. V.; Prasad, S. B.; Jayaraman, G.; Ramachandran, K. B. Chromosomal Integration of Hyaluronic Acid Synthesis (Has) Genes Enhances the Molecular Weight of Hyaluronan Produced in Lactococcus lactis. Biotech. J. 2014, 9, 1554–1564.
  • Chen, W. Y.; Marcellin, E.; Hung, J.; Nielsen, L. K. Hyaluronan Molecular Weight is Controlled by UDP-N-Acetylglucosamine Concentration in Streptococcus Zooepidemicus. J. Biol. Chem. 2009, 284, 18007–18014.
  • Izawa, N.; Serata, M.; Sone, T.; Omasa, T.; Ohtake, H. Hyaluronic Acid Production by Recombinant Streptococcus thermophilus. J. Biosci. Bioeng. 2011, 111, 665–670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.