155
Views
4
CrossRef citations to date
0
Altmetric
Articles

Prospecting of soybean hulls as an inducer carbon source for the cellulase production

, , , , , , & show all
Pages 743-749 | Received 07 May 2018, Accepted 07 Jul 2018, Published online: 28 Sep 2018

References

  • Wyman, W.; Henríquez, J.; Palma, C.; Carvajal, A. Lignocellulosic Waste Valorisation Strategy through Enzyme and Biogas Production. Bioresour. Technol. 2018, 247, 402–411.
  • Arévalo-Gallegos, A.; Ahmad, Z.; Asgher, M.; Parra-Saldivar, R.; Iqbal, H. M. N. Lignocellulose: A Sustainable Material to Produce Value-Added Products with a Zero Waste Approach - a Review. Int. J. Biol. Macromol. 2017, 99, 308–318.
  • Liu, H. M.; Li, H. Y. Application and Conversion of Soybean Hulls. In: Soybean - the Basis of Yield, Biomass and Productivity. In Tech., London, 2017, 7, 111–132.
  • Chen, H. Chemical Composition and Structure of Natural Lignocellulose. In: Chemical Composition and Structure of Natural Lignocellulose. Springer, Dordrecht, 2014, 2, 25–71.
  • Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A Review on the Pretreatment of Lignocellulose for High-Value Chemicals. Fuel Process. Technol. 2017, 160, 196–206.
  • Juturu, V.; Wu, J. C. Microbial Cellulases: Engineering, Production and Applications. Renew. Sust. Energ. Rev. 2014, 33, 188–203.
  • Obeng, E. M.; Adam, S. N. N.; Budiman, C.; Ongkudon, C. M.; Maas, R.; Jose, J. Lignocellulases: A Review of Emerging and Developing Enzymes, Systems, and Practices. Bioresour. Bioprocess. 2017, 4, 2017.
  • Victoria, J.; Odaneth, A.; Lali, A. Importance of Cellulase Cocktails favoring hydrolysis of cellulose. Prep. Biochem. Biotechnol. 2017, 47, 547–553.
  • He, Y.-C.; Liu, F.; Gong, L.; Di, J.-H.; Ding, Y.; Ma, C.-L.; Zhang, D.-P.; Tao, Z.-C.; Wang, C.; Yang, B. Enzymatic in Situ Saccharification of Chestnut Shell with High Ionic Liquid-Tolerant Cellulases from Galactomyces Sp. CCZU11-1 in a Biocompatible Ionic Liquid-Cellulase Media. Bioresour. Technol. 2016, 201, 133–139.
  • Karimi, K.; Taherzadeh, M. J. A Critical Review on Analysis in Pretreatment of Lignocellulose: Degree of Polymerization, Adsorption/Desorption, and Accessibility. Bioresour. Technol. 2016, 203, 348–3562.
  • Jönsson, L. J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112.
  • Hassan, S. S.; Williams, G. A.; Jaiswal, A. K. Emerging Technologies for the Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2018, 262, 310–318.
  • Loow, L. Y.; Wu, T. Y.; Jahim, J. M.; Mohammad, A. W.; Teoh, W. H. Typical Conversion of Lignocellulosic Biomass into Reducing Sugars Using Dilute Acid Hydrolysis and Alkaline Pretreatment. Cellulose. 2016, 23, 1491–1520.
  • Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv Fractionating Pre-Treatment of Lignocellulosic Biomass for Efficient Enzymatic Saccharification: Chemistry, Kinetics, and Substrate Structures. Biofuels, Bioprod. Bioref. 2017, 11, 567–590.
  • Bhutto, A. W.; Qureshi, K.; Harijan, K.; Abro, R.; Abbas, T.; Bazmi, A. A.; Karim, S.; Yu, G. Insight into Progress in Pre-Treatment of Lignocellulosic Biomass. Energy. 2017, 122, 724–745.
  • Castellani, A. Viability of Some Pathogenic Fungi in Distilled Water. J. Trop. Med. Hyg. 1963, 20, 1–226.
  • Guimarães, L. H. S.; Peixoto-Nogueira, S. C.; Michelin, M.; Rizzatti, A. C.; Sandrim, V. C.; Zanoelo, F. F.; Aquino, A. C. M. M.; Junior, A. B.; Polizeli, M. L. T. M. Screening of Filamentous Fungi for Production of Enzymes of Biotechnological Interest. Braz. J. Microbiol. 2006, 37, 474–480.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428.
  • Wood, T. M.; Bhat, K. M. Methods for Measuring Cellulase Activities. Methods Enzymol. 1988, 160, 87–112.
  • Krogh, K. B. R.; Mørkeberg, A.; Jørgensen, H.; Frisvad, J. C.; Olsson, L. Screening Genus Penicillium for Producers of Cellulolytic and Xylanolytic Enzymes. Appl. Biochem. Biotechnol. 2004, 113-116, 389–401.
  • Vaishnav, N.; Singh, A.; Adsul, A.; Dixit, P.; Sandhu, S. K.; Mathur, A.; Puri, S. K.; Singhania, R. R. Penicillium: The Next Emerging Champion for Cellulase Production. Bioresour. Technol. Rep. 2018, 2, 131–140.
  • Ruzene, D. S.; Silva, D. P.; Vicente, A. A.; Gonçalves, A. R.; Teixeira, J. A. An Alternative Application to the Portuguese Agro-Industrial Residue: Wheat Straw. Appl. Biochem. Biotechnol. 2008, 147, 85–96.
  • Ruiz, H. A.; Ruzene, D. S.; Silva, D. P.; Silva, F. F. M.; Vicente, A. A.; Teixeira, J. A. Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis and Organosolv) for Wheat Straw Delignification. Appl. Biochem. Biotechnol. 2011, 164, 629–641.
  • Takenaka, A.; D'Silva, C. G.; Kudo, H.; Itabashi, H.; Cheng, K.-J. Molecular Cloning, Expression, and Characterization of an Endo-Beta-1,4-Glucanase cDNA from Epidinium Caudatum. J. Gen. Appl. Microbiol. 1999, 45, 57–61.
  • Reis, L.; Fontana, R. C.; Delabona, P. S.; Lima, D. J. S.; Camassola, M.; Pradella, J. G. C.; Dillon, A. J. P. Increased Production of Cellulases and Xylanases by Penicillium Echinulatum S1M29 in Batch and Fed-Batch Culture. Bioresour. Technol. 2013, 146, 597–603.
  • He, Y.-C.; Xia, D.-Q.; Ma, C.-L.; Gong, L.; Gong, T.; Wu, M.-X.; Zhang, Y.; Tang, Y.-J.; Xu, J.-H.; Liu, Y.-Y. Enzymatic Saccharification of Sugarcane Bagasse by N-Methylmorpholine-N-Oxide-Tolerant Cellulase from a Newly Isolated Galactomyces Sp. CCZU11-1. Bioresour. Technol. 2013, 135, 18–22.
  • He, Y. C.; Gong, L.; Liu, F.; Lu, T.; Qing, Q.; Wang, L. Q.; Zhang, Y.; Gao, F. T.; Wang, X. Waste Biogas Residue from Cassava Dregs as Carbon Source to Produce Galactomyces Sp. Cczu11-1 Cellulase and Its Enzymatic Saccharification. Appl. Biochem. Biotechnol. 2014, 173, 894–903.
  • Oliveira, S. D.; Padilha, C. E. A.; Asevedo, E. A.; Pimentel, V. C.; Araújo, F. R.; Macedo, G. R.; Santos, E. S. Utilization of Agroindustrial Residues for Producing Cellulases by Aspergillus fumigatus on Semi-Solid Fermentation. J. Environ. Chem. Eng. 2018, 6, 937–944.
  • Schneider, W. D. H.; Gonçalves, T. A.; Uchima, C. A.; Reis, L.; Fontana, R. C.; Squina, F. M.; Dillon, A. J. P.; Camassola, M. Comparison of the Production of Enzymes to Cell Wall Hydrolysis Using Different Carbon Sources by Penicillium Echinulatum Strains and Its Hydrolysis Potential for Lignocelullosic Biomass. Process. Biochem. 2018, 66, 162–170.
  • Yang, Y.; Yang, J.; Liu, J.; Wang, R.; Liu, L.; Wang, F.; Yuan, H. The Composition of Accessory Enzymes of Penicillium Chrysogenum P33 Revealed by Secretome and Synergistic Effects with Commercial Cellulase on Lignocellulose Hydrolysis. Bioresour. Technol. 2018, 257, 54–61.
  • Hardiman, E.; Gibbs, M.; Reeves, R.; Bergquist, P. Directed Evolution of a Thermophilic Beta-Glucosidase for Cellulosic Bioethanol Production. Appl. Biochem. Biotechnol. 2010, 161, 301–312.
  • Scheller, H. V.; Ulvskov, P. Hemicelluloses. Annu Rev Plant Biol. 2010, 61, 263–289. 2010.
  • Santa-Rosa, P. S.; Souza, A. L.; Roque, R. A.; Andrade, E. V.; Astolfi-Filho, S.; Mota, A. J.; Nunes-Silva, C. G. Production of Thermostable β-Glucosidase and CMCase by Penicillium Sp. LMI01 Isolated from the Amazon Region. Electron. J. Biotechnol. 2018, 31, 84–92.
  • Ramani, G.; Meera, B.; Vanitha, C.; Rao, M.; Gunasekaran, P. Production, Purification, and Characterization of a β-Glucosidase of Penicillium Funiculosum NCL1. Appl. Biochem. Biotechnol. 2012, 167, 959–972.
  • Michelin, M.; Polizeli, M. T. M.; Ruzene, D. S.; Silva, D. P.; Ruiz, H. A.; Vicente, A. A.; Jorge, J. A.; Terenzi, H. F.; Teixeira, J. A. Production of Xylanase and β-Xylosidase from Autohydrolysis Liquor of Corncob Using Two Fungal Strains. Bioprocess Biosyst. Eng. 2012, 35, 1185–1192.
  • Shibata, N.; Suetsugu, M.; Kakeshita, H.; Igarashi, K.; Hagihara, H.; Takimura, Y. A Novel GH10 Xylanase from Penicillium Sp. accelerates Saccharifcation of Alkaline-Pretreated Bagasse by an Enzyme from Recombinant Trichoderma Reesei Expressing Aspergillus β-Glucosidase. Biotechnol. Biofuels. 2017, 10, 278.
  • Panesar, P. S.; Kaur, R.; Singla, G.; Sangwan, R. S. Bio-Processing of Agro-Industrial Wastes for Production of Food-Grade Enzymes: Progress and Prospects. Appl. Food Biotechnol. 2016, 3, 208–227.
  • Bharathiraja, S.; Suriya, J.; Krishnan, M.; Manivasagan, P.; Kim, S. K. Production of Enzymes from Agricultural Wastes and Their Potential Industrial Applications. Adv. Food Nutr. Res. 2017, 80, 125–148.
  • Sadh, P. K.; Duhan, S.; Duhan, J. S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 2–15.
  • Choi, J. M.; Han, S. S.; Kim, H. S. Industrial Applications of Enzyme Biocatalysis: Current Status and Future Aspects. Biotechnol. Adv. 2015, 33, 1443–1454.
  • Dai, Y.; Zhang, H.-S.; Huan, B.; He, Y. Enhancing the Enzymatic Saccharification of Bamboo Shoot Shell by Sequential Biological Pretreatment with Galactomyces Sp. CCZU11-1 and Deep Eutectic Solvent Extraction. Bioprocess Biosyst. Eng. 2017, 40, 1427–1436.
  • Gasparotto, J. M.; Werle, L. B.; Foletto, E. L.; Kuhn, R. C.; Jahn, S. L.; Mazutti, M. A. Production of Cellulolytic Enzymes and Application of Crude Enzymatic Extract for Saccharification of Lignocellulosic Biomass. Appl. Biochem. Biotechnol. 2015, 175, 560–572.
  • Manisha, Y. S. K. Technological Advances and Applications of Hydrolytic Enzymes for Valorization of Lignocellulosic Biomass. Bioresour. Technol. 2017, 245, 1727–1739.
  • Barakat, A.; Chuetor, S.; Monlau, F.; Solhy, A.; Rouau, X. Eco-Friendly Dry Chemo-Mechanical Pretreatments of Lignocellulosic Biomass: Impact on Energy and Yield of the Enzymatic Hydrolysis. Appl. Energy. 2014, 113, 97–105.
  • García-Torreiro, M.; Martínez-Patiño, J. C.; Gullón, B.; Lú-Chau, T. A.; Moreira, M. T.; Lema, J. M.; Eibe, G. Simultaneous Valorization and Detoxification of the Hemicellulose Rich Liquor from the Organosolv Fractionation. Int. Biodeterior. Biodegradation. 2018, 126, 112–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.