184
Views
11
CrossRef citations to date
0
Altmetric
Articles

Catalytic and thermodynamic properties of β-glucosidases produced by Lichtheimia corymbifera and Byssochlamys spectabilis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 777-786 | Received 27 Mar 2018, Accepted 16 Jun 2018, Published online: 10 Oct 2018

References

  • Ferreira, V.; Faber, M. O.; Mesquita, S. S.; Pereira, N. Jr. Simultaneous Saccharification and Fermentation Process of Different Cellulosic Substrates Using a Recombinant Saccharomyces cerevisiae Harbouring the β-Glucosidase Gene. Electron. J. Biotechnol. 2010, 13, 5–6.
  • Ng, I. S.; Li, C. W.; Chan, S. P.; Chir, J. L.; Chen, P. T.; Tong, C. G.; Yu, S. M.; Ho, T. H. D. High-Level Production of a Thermoacidophilic β-Glucosidase from Penicillium citrinum YS40-5 by Solid-State Fermentation with Rice Bran. Bioresour. Technol. 2010, 101, 1310–1317.
  • Krisch, J.; Bencsik, O.; Papp, T.; Vágvölgyi, C.; Takó, M. Characterization of a β-Glucosidase with Transgalactosylation Capacity from the Zygomycete Rhizomucor Miehei. Process Biochem. 2012, 114, 555–560.
  • Baffi, M. A.; Tobal, T.; Henrique, J.; Lago, G.; Leite, R. S. R.; Boscolo, M.; Gomes, E.; Da-Silva, R. A Novel β-Glucosidase from Sporidiobolus Pararoseus: Characterization and Application in Winemaking. J. Food Sci. 2011, 76, C997–1002.
  • Silva, L. H.; Celeghini, R. M. S.; Chang, Y. K. Effect of the Fermentation of Whole Soybean flour on the Conversion of Isoflavones from Glycosides to Aglycones. Food Chem. 2011, 128, 640–644.
  • Garcia, N. F. L.; Santos, F. R. S.; Gonçalves, F. A.; Da Paz, M. F.; Fonseca, G. G.; Leite, R. S. R. Production of β-Glucosidase on Solid-State Fermentation by Lichtheimia ramosa in Agroindustrial Residues: Characterization and Catalytic Properties of the Enzymatic Extract. Electron. J. Biotechnol. 2015, 18, 314–319.
  • Delabona, P. D. S.; Pirota, R. D. P. B.; Codima, C. A.; Tremacoldi, C. R.; Rodrigues, A.; Farinas, C. S. Effect of Initial Moisture Content on Two Amazon Rainforest Aspergillus Strains Cultivated on Agro-Industrial Residues: Biomass-Degrading Enzymes Production and Characterization. Ind. Crops Prod. 2013, 42, 236–242.
  • Santos, F. R. S.; Garcia, N. F. L.; Da Paz, M. F.; Fonseca, G. G.; Leite, R. S. R. Production and Characterization of β-Glucosidase from Gongronella Butleri by Solid-State Fermentation. Afr. J. Biotechnol. 2016, 15, 633–641.
  • Gonçalves, F. A.; Leite, R. S. R.; Rodrigues, A.; Argandoña, E. J. S.; Fonseca, G. G. Isolation, Identification and Characterization of a Novel High Level β-Glucosidase-Producing Lichtheimia ramosa Strain. Biocatal. Agric. Biotechnol. 2013, 2, 377–384. 10.1016/j.bcab.2013.06.006
  • Tomazic, S. J.; Klibanov, A. M. Mechanisms of Irreversible Thermal Inactivation of Bacillus alpha-amylases. J. Biol. Chem. 1988, 263, 3086–3091.
  • Leite, R. S. R.; Gomes, E.; Silva, R. Characterization and Comparison of Thermostability of Purified β-Glucosidases from a Mesophilic Aureobasidium Pullulans and a Thermophilic Thermoascus Aurantiacus. Process Biochem. 2007, 42, 1101–1106.
  • Silva, F. A. S.; Azevedo, C. A. V. The Assistat Software Version 7.7 and Its Use in the Analysis of Experimental Data. Afr. J. Agric. Res. 2016, 11, 3733–3740. 10.5897/AJAR2016.11522
  • Leite, R. S. R.; Alves-Prado, H. F.; Cabral, H.; Pagnocca, F. C.; Gomes, E.; Da-Silva, R. Production and Characteristics Comparison of Crude β-Glucosidases Produced by Microorganisms Thermoascus Aurantiacus e Aureobasidium Pullulans in Agricultural Wastes. Enzyme Microb. Technol. 2008, 43, 391–395.
  • Deswal, D.; Khasa, Y. P.; Kuhad, R. C. Optimization of Cellulase Production by a Brown Rot Fungus Formitopsis Sp. RCK2010 under Solid State Fermentation. Bioresour. Technol. 2011, 102, 6065–6072.
  • Abdella, A.; Mazeed, T. E. S.; El-Baz, A. F.; Yang, S. T. Production of β-Glucosidase from Wheat Bran and Glycerol by Aspergillus niger in Stirred Tank and Rotating Fibrous Bed Bioreactors. Process Biochem. 2016, 51, 1331–1337.
  • Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11.
  • Brijwani, K.; Oberoi, H. S.; Vadlani, P. V. Production of a Cellulolytic Enzyme System in Mixed-Culture Solid-State Fermentation of Soybean Hulls Supplemented with Wheat Bran. Process Biochem. 2010, 45, 120–128.
  • Kilikian, B. V.; Afonso, L. C.; Souza, T. F. C.; Ferreira, R. G.; Pinheiro, I. R. Filamentous Fungi and Media for Cellulase Production in Solid State Cultures. Braz. J. Microbiol. 2014, 45, 279–286.
  • Pandey, A.; Soccol, C. R.; Mitchell, D. New Developments in Solid State Fermentation: I-Bioprocesses and Products. Process Biochem. 2000, 35, 1153–1169.
  • Singhania, R. R.; Sukumaran, R. K.; Patel, A. K.; Larroche, C.; Pandey, A. Advancement and Comparative Profiles in the Production Technologies Using Solid-State and Submerged Fermentation for Microbial Cellulases. Enzyme Microb. Technol. 2010, 46, 541–549.
  • Medina-Morales, M. A.; López-Trujillo, J.; Gómez-Narváez, L.; Mellado, M.; García-Martínez, E.; Ascacio-Valdés, J. A.; Aguilar, C. N.; Aguilera-Carbo, A. Effect of Growth Conditions on b-Glucosidase Production Using Flourensia Cernua Leaves in a Solid-State Fungal Bioprocess. 3 Biotech. 2017, 7, 355–361.
  • Pereira, J. C.; Marques, N. P.; Rodrigues, A.; Oliveira, T. B.; Boscolo, M.D.; Silva, R.; Gomes, E.; Bocchini-Martins, D. A. Thermophilic Fungi as New Sources for Production of Cellulases and Xylanases with Potential Use in Sugarcane Bagasse Saccharification. J. Appl. Microbiol. 2015, 118, 928–939.
  • Okuyama, M.; Tanimoto, Y.; Ito, T.; Anzai, A.; Mori, H.; Kimura, A.; Matsui, H.; Chiba, S. Purification and Characterization of the Hyper-Glycosylated Extracellular α-Glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol 2005, 37, 472–480.
  • Neto, J. B. Purificação de Enzimas. In Biotecnologia Industrial; Lima, U. A., Aquarone, E., Borzani, W., Schmidell, W., Eds.; São Paulo, Brasil; Edgard Blücher Ltda, 2001; pp. 377–390.
  • Liu, D.; Zhang, R.; Yang, Z.; Zhang, Z.; Song, S.; Miao, Y.; Shen, Q. Characterization of a Thermostable β-Glucosidase from Aspergillus fumigatus Z5, and Its Functional Expression in Pichia pastoris X33. Microb. Cell Fact. 2012, 11, 25–25.
  • Joo, A. R.; Jeya, M.; Lee, K. M.; Lee, K. M.; Moon, H. J.; Kim, Y. S.; Lee, J. K. Production and Characterization of β 1,4-Glucosidase from a Strain of Penicillium Pinopihilum. Process Biochem. 2010, 45, 851–858.
  • Kaur, J.; Chadha, B. S.; Badhan, A. K.; Kaur, G. S.; Saini, H. S. Purification and Characterization of β-Glucosidase from Melanocarpus Sp. MTCC 3922. Electron. J. Biotechnol. 2007, 10, 0–270.
  • Irshad, M.; Anwar, Z.; Ramzan, M.; Mahmood, Z.; Nawaz, H. Characterization of Purified β-Glucosidase Produced from Trichoderma Viride through Bio-Processing of Orange Peel Waste. ABB. 2013, 4, 941–944.
  • Bhatia, Y.; Mishra, S.; Bisaria, V. S. Microbial beta-glucosidases: cloning, properties, and applications. Crit. Rev. Biotechnol. 2002, 22, 375–407.
  • Bhiri, F.; Chaabouni, S. E.; Limam, F.; Ghrir, R.; Marzouki, N. Purification and Biochemical Characterization of Extracellular β-Glucosidases from the Hypercellulolytic Pol6 Mutant of Penicillium Occitanis. Appl. Biochem. Biotechnol. 2008, 149, 169–182.
  • Yang, S.; Qiaojuan, Y.; Jiang, Z.; Fan, G.; Wang, L. Biochemical Characterization of a Novel Thermostable Beta-1,3-1,4-Glucanase (Lichenase) from Paecilomyces Thermophila. J. Agric. Food Chem. 2008, 56, 5345–5351.
  • Vieille, C.; Zeikus, G. J. Hyperthermophilic Enzymes: sources, Use, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43.
  • Gomes, E.; Guez, M. A. U.; Martin, N.; Da Silva, R. Enzimas Termoestáveis: fontes, Produção e Aplicação Industrial. Quím. Nova. 2007, 30, 136–145.
  • Baraldo Junior, A.; Borges, D. G.; Tardioli, P. W.; Farinas, C. S. Characterization of β-Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose. Biotechnol. Res. Int. 2014, 2014, 1–8.
  • Mehmood, M. A.; Shahid, I.; Hussain, K.; Latif, F.; Rajoka, M. I. Thermodynamic Properties of the β-Glucosidase from Thermotoga maritima Extend the Upper Limit of Thermophilicity. Protein Pept. Lett. 2014, 21, 1282–1288.
  • Zaccardi, M.; Mannweiler, O.; Boehr, D. D. Differences in the Catalytic Mechanisms of Mesophilic and Thermophilic Indole-3-Glycerol Phosphate Synthase Enzymes at Their Adaptive Temperatures. Biochem. Biophys. Res. Commun. 2012, 418, 324–329.
  • Bruins, M. E.; Janssen, A. E. M.; Boom, R. M. Thermozymes and Their Applications: A Review of Recent Literature and Patents. Appl. Abab. 2001, 90, 155–181.
  • Sun, X.; Liu, Z.; Qu, Y.; Li, X. The Effects of Wheat Bran Composition on the Production of Biomass-Hydrolyzing Enzymes by Penicillium Decumbens. Appl. Biochem. Biotechnol. 2008, 146, 119–128.
  • Gu, Y.; Qiao, M.; Zhou, Q.; Zhou, Z.; Chen, G. Hyperproduction of Alcohol Using Yeast Fermentation in Highly Concentrated Molasses Medium. Tsinghua Sci. Technol. 2001, 6, 225–230.
  • Karnaouri, A.; Topakas, E.; Paschos, T.; Taouki, L.; Christakopoulos, P. Cloning, Expression and Characterization of an Ethanol Tolerant GH3 β-Glucosidase from Myceliophthora Thermophila. PeerJ. 2013, 1, e46–e20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.