265
Views
14
CrossRef citations to date
0
Altmetric
Articles

Carboxymethyl cellulase production optimization from Glutamicibacter arilaitensis strain ALA4 and its application in lignocellulosic waste biomass saccharification

, &
Pages 853-866 | Received 08 May 2018, Accepted 11 Aug 2018, Published online: 10 Oct 2018

References

  • Sweeney, M. D.; Xu, F. Biomass Converting Enzymes as Industrial Biocatalysts for Fuels and Chemicals: Recent Developments. Catalysts. 2012, 2, 244–263.
  • Bekare, M. K.; Adewale, I. O.; Ajayi, A.; Shonukan, O. O. Purification and Characterization of Cellulase from the Wild-Type and Two Improved Mutants of Pseudomonas fluorescens. Afr. J. Biotechnol. 2005, 4, 898–904.
  • Mandal, M.; Ghosh, U. Statistical Optimization of Cellulase Biosynthesis by Isolated Cellulolytic Fungi Utilizing Horticultural Waste. Acta Biol. Szeged. 2016, 60, 39–48.
  • Sadhu, S.; Ghosh, P. K.; Aditya, G.; Maiti, T. K. Optimization and Strain Improvement by Mutation for Enhanced Cellulase Production by Bacillus sp. (MTCC10046) Isolated from Cow Dung. J. King Saud Univ. – Sci. 2014, 26, 323–332.
  • Awodun, M. A.; Omonijo, L. I.; Ojeniyi, S. O. Effect of Goat Dung and NPK Fertilizer on Soil and Leaf Nutrient Content, Growth and Yield of Pepper. Int. J. Soil Sci. 2007, 2, 142–147.
  • Khusro, A.; Kaliyan, B. K.; Al-Dhabi, N. A.; Arasu, M. V.; Agastian, P. Statistical Optimization of Thermo-Alkali Stable Xylanase Production from Bacillus tequilensis Strain ARMATI. Electron. J. Biotechnol. 2016, 22, 16–25.
  • Aarti, C.; Khusro, A.; Agastian, P. Goat Dung as a Feedstock for Hyper-Production of Amylase from Glutamicibacter arilaitensis Strain ALA4. Bioresour. Bioprocess. 2017, 4, 43.
  • Ladeira, S. A.; Cruz, E.; Delatorre, A. B.; Barbosa, J. B.; Martins, M. L. L. Cellulase Production by Thermophilic Bacillus sp. SMIA-2 and Its Detergent Compatibility. Electron. J. Biotechnol. 2015, 18, 110–115.
  • Fuji, K.; Satomi, M.; Fukui, Y.; Matsunobu, S.; Morifuku, Y.; Enokida, Y. Streptomyces abietis sp. nov., a Cellulolytic Bacterium Isolated from Soil of a Pine Forest. Int. J. Syst. Evol. Microbiol. 2013, 63, 4754–4759.
  • Podosokorskaya, O. A.; Bonch-Osmolovskaya, E. A.; Novikov, A. A.; Kolganova, T. V.; Kublanov, I. V. Ornatilinea apprima Gen. nov., sp. nov., a Cellulolytic Representative of the Class Anaerolineae. Int. J. Syst. Evol. Microbiol. 2013, 63, 86–92.
  • Kusube, M.; Sugihara, A.; Moriwaki, Y.; Ueoka, T.; Shimane, Y.; Minegishi, H. Alicyclobacillus cellulosilyticus sp. nov., a Thermophilic, Cellulolytic Bacterium Isolated from Steamed Japanese Cedar Chips from a Lumbermill. Int. J. Syst. Evol. Microbiol. 2014, 64, 2257–2263.
  • Bing, W.; Wang, H.; Zheng, B.; Zhang, F.; Zhu, G.; Feng, Y.; Zhang, Z. Caldicellulosiruptor changbaiensis sp. nov., a Cellulolytic and Hydrogen-Producing Bacterium from a Hot Spring. Int. J. Syst. Evol. Microbiol. 2015, 65, 293–297.
  • Ghose, T. K. Measurement of Cellulase Activities. Pure Appl. Chem. 1987, 59, 257–268.
  • Bradford, M. M. A Rapid and Sensitive for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analyt. Biochem. 1976, 72, 248–254.
  • Deshpande, M. V. Ethanol Production from Cellulose by Coupled Saccharification/Fermentation Using Saccharomyces cerevisiae and Cellulase Complex from Sclerotium Rolfsii UV-8mutant. Appl. Biochem. Biotechnol. 1992, 36, 227–234.
  • Carrasco, J. E.; Sáiz, M. C.; Navarro, A.; Soriano, P.; Sáez, F.; Martinez, J. M. Effect of Dilute Acid and Steam Explosion Pretreatments on the Cellulose Structure and Kinetics of Cellulosic Fraction Hydrolysis by Dilute Acids in Lignocellulosic Materials. Appl. Biochem. Biotechnol. 1994, 45–46, 23–34.
  • Saura-Calixto, F.; Cañellas, J.; Garcia-Raso, J. Determination of Hemicellulose, Cellulose and Lignin Contents of Dietary Fibre and Crude Fibre of Several Seed Hulls. Data Comparison. Z Lebensm. Unters. Forch. 1983, 177, 200–202.
  • Khobragade, C. N.; Sureshkumar, K.; Borkar, P. S.; Sagar, A. D. Enzymatic Saccharification of Cellulosic Waste by Cellulase System of Cellulomonas uda Immobilized on Tri(4-Formyl Phenoxy) Cyanurate. Indian J. Chem. Technol. 2004, 11, 816–819.
  • Miller, G. L. Use of Dinitrosalycilic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428..
  • Mandels, M.; Sternberg, D. Recent Advances in Cellulase Technology. J. Ferment. Technol. 1976, 54, 267–286.
  • Mnkeni, P. N. S.; Austin, L. M. Fertilizer Value of Human Manure from Pilot Urine-Diversion Toilets. Water SA. 2009, 35, 133–138.
  • Premalatha, N.; Gopal, N. O.; Jose, P. A.; Anandham, R.; Kwon, S. W. Optimization of Cellulase Production by Enhydrobacter sp. ACCA2 and Its Application in Biomass Saccharification. Front. Microbiol. 2015, 6, 1046.
  • Irfan, M.; Mushtaq, Q.; Tabssum, F.; Shakir, H. A.; Qazi, J. I. Carboxymethyl Cellulase Production Optimization from Newly Isolated Thermophilic Bacillus subtilis K–18 for Saccharification Using Response Surface Methodology. AMB Expr. 2017, 7, 29.
  • Vijayaraghavan, P.; Arun, A.; Al–Dhabi, N. A.; Vincent, S. G. P.; Arasu, M. V.; Choi, K. C. Novel Bacillus subtilis IND19 Cell Factory for the Simultaneous Production of Carboxy Methyl Cellulase and Protease Using Cow Dung Substrate in Solid–Substrate Fermentation. Biotechnol. Biofuels. 2016, 9, 73.
  • Bai, S.; Ravi Kumar, M.; Mukesh Kumar, D. J.; Balashanmugam, P.; Bala Kumaran, M. D.; Kalaichelvan, P. T. Cellulase Production by Bacillus subtilis Isolated from Cow Dung. Arch. Appl. Sci. Res. 2012, 4, 269–279.
  • Alrumman, S. A. Enzymatic Saccharification and Fermentation of Cellulosic Date Palm Wastes to Glucose and Lactic Acid. Braz. J. Microbiol. 2016, 47, 110–119.
  • Zhang, D.; Luo, Y.; Chu, S.; Zhi, Y.; Wang, B.; Zhou, P. Biological Pretreatment of Rice Straw with Streptomyces griseorubens JSD-1 and Its Optimized Production of Cellulase and Xylanase for Improved Enzymatic Saccharfication Efficiency. Prep. Biochem. Biotechnol. 2016, 46, 575–585.
  • Ire, F. S.; Ezebuiro, V.; Ogugbue, C. J. Production of Bioethanol by Bacterial co-Culture from Agro-Waste-Impacted Soil through Simultaneous Saccharification and co-Fermentation of Steam-Exploded Bagasse. Bioresour. Bioprocess. 2016, 3, 26.
  • Deka, D.; Das, S. P.; Sahoo, N.; Das, D.; Jawed, M.; Goyal, D.; Goyal, A. Enhanced Cellulase Production from Bacillus subtilis by Optimizing Physical Parameters for Bioethanol Production. ISRN Biotechnol. 2013, 2013, 1.
  • Kazeem, M. O.; Shah, U. K. M.; Baharuddin, A. S.; Abdul Rahman, N. A. Enhanced Cellulase Production by a Novel Thermophilic Bacillus licheniformis 2D55: characterization and Application in Lignocellulosic Saccharification. BioResources. 2016, 11, 5404–5423.
  • Harshvardhan, K.; Mishra, A.; Jha, B. Purification and Characterization of Cellulase from a Marine Bacillus sp. H1666: A Potential Agent for Single Step Saccharification of Seaweed Biomass. J. Mol. Catal. B Enzy. 2013, 93, 51–56.
  • Haq, I. U.; Hameed, U.; Shahzadi, K.; Javed, M.; Ali, S.; Qadeer, M. A. Cotton Saccharifying Activity of Cellulases by Trichoderma harzianum UM-11 in Shake Flask. Int. J. Bot. 2005, 1, 19–22.
  • Hussain, A. A.; Abdel-Salam, M. S.; Abo-Ghalia, H. H.; Hegazy, W. K.; Hafez, S. S. Optimization and Molecular Identification of Novel Cellulose Degrading Bacteria Isolated from Egyptian Environment. J. Genet. Eng. Biotechnol. 2017, 15, 77–85.
  • Shajahan, S.; Moorthy, I. G.; Sivakumar, N.; Selvakumar, G. Statistical Modeling and Optimization of Cellulase Production by Bacillus licheniformis NCIM 5556 Isolated from the Hot Spring, Maharashtra, India. J. King Saud Univ. – Sci. 2017, 29, 302–310.
  • Vijayaraghavan, P.; Vincent, S. G. P.; Dhillon, G. S. Solid-Substrate Bioprocessing of Cow Dung for the Production of Carboxymethyl Cellulase by Bacillus halodurans IND18. Waste Manag. 2016, 48, 513–520.
  • Thakkar, A.; Saraf, M. Application of Statistically Based Experimental Designs to Optimize Cellulase Production and Identification of Gene. Nat. Prod. Bioprospect. 2014, 4, 341–351.
  • Paudel, Y. P.; Qin, W. Characterization of Novel Cellulase-Producing Bacteria Isolated from Rotting Wood Samples. Appl. Biochem. Biotechnol. 2015, 177, 1186–1198.
  • Shafique, S.; Asghier, M.; Sheikh, M. A.; Asad, M. J. Solid State Fermentation of Banana Stalk for Exoglucanase Production. Int. J. Agri. Biol. 2004, 6, 488–491.
  • Shu-bin, L.; Ren-Cha, Z.; Xia, L.; Chu-Yi, C.; Ai-Lin, Y. Solid-State Fermentation with Okara for Production of Cellobiase-Rich Cellulases Preparation by a Selected Bacillus subtilis Pa5. Afr. J. Microbiol. 2012, 11, 2720–2730.
  • Annamalai, N.; Rajeswari, M. V.; Elayaraja, S.; Balasubramanian, T. Thermostable, Haloalkaline Cellulase from Bacillus halodurans CAS 1 by Conversion of Lignocellulosic Wastes. Carbohy. Polym. 2013, 94, 409–415.
  • Leghlimi, H.; Meraihi, Z.; Boukhalfa-Lezzar, H.; Copinet, E.; Duchiron, F. Production and Characterization of Cellulolytic Activities Produced by Trichoderma longibrachiatum (GHL). Afr. J. Biotechnol. 2013, 12, 465–475.
  • Azadian, F.; Badoei-Dalfard, A.; Namaki Shoushtari, A.; Karami, Z.; Hassanshahian, M. Production and Characterization of an Acido-Thermophilic, Organic Solvent Stable Cellulase from Bacillus sonorensis HSC7 by Conversion of Lignocellulosic Wastes. J. Genet. Eng. Biotechnol. 2017, 15, 187–196.
  • Azzeddine, B.; Abdelaziz, M.; Estelle, C.; Mouloud, K.; Nawel, B.; Nabila, B.; Francis, D.; Said, D. B. Optimization and Partial Characterization of en- Doglucanase Produced by Streptomyces sp. B-PNG23. Arch. Biol. Sci. (Beogr). 2013, 65, 549–558.
  • Vasconcellos, V. M.; Tardioli, P. W.; Giordano, R. L. C.; Farinas, C. S. Addition of Metal Ions to a (Hemi) Cellulolytic Enzymatic Cocktail Produced in-House Improves Its Activity, Thermostability, and Efficiency in the Saccharification of Pretreated Sugarcane Bagasse. New Biotechnol. 2016, 33, 331–337.
  • Pottkamper, J.; Barthen, P.; Ilmberger, N.; Schwaneberg, U.; Schenk, A.; Schulte, M.; Ignatiev, N.; Streit, W. R. Applying Metagenomics for the Identification of Bacterial Cellulases That Are Stable in Ionic Liquids. Green Chem. 2009, 11, 957–965.
  • Liu, J.; Shi, J.; Li, J.; Yuan, X.; Liu, C. Effects of Surfactants on Ethanol Production from Rice Straw by Simultaneous Saccharification and Fermentation. International Conference: Electronics, Communications and Control. 2011, 2011, 3701–3710
  • Akhtar, M. S.; Saleem, M.; Akhtar, M. W. Saccharification of Lignocellulosic Materials by the Cellulases of Bacillus subtilis. J. of Bio. Sci. 2001, 1, 202–398.
  • Uzunlu, N.; Hoşgün, E. Z.; Bozan, B. Optimization of Alkaline Pretreatment for Enzymatic Saccharification of Poppy Stalks. BioResources. 2014, 9, 2824–2834.
  • Kumar, V.; Chhabra, D.; Shukla, P. Xylanase Production from Thermomyces lanuginosus VAPS-24 Using Low Cost Agro-Industrial Residues via Hybrid Optimization Tools and Its Potential Use for Saccharification. Bioresour. Technol. 2017, 243, 1009–1019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.