341
Views
12
CrossRef citations to date
0
Altmetric
Articles

Production of recombinant beta-amylase of Bacillus aryabhattai

, , , &

References

  • Srivastava, G.; Kayastha, A.M. Beta-Amylase from Starchless Seeds of Trigonella Foenum-Graecum and Its Localization in Germinating Seeds. PLoS One. 2014, 9, e88697. doi: 10.1371/journal.pone.0088697.
  • Fazekas, E.; Szabó, K.; Kandra, L.; Gyémánt, G. Unexpected Mode of Action of Sweet Potato Beta-Amylase on Maltooligomer Substrates. BBA-Proteins Proteom 2013, 1834, 1976–1981. doi: 10.1016/j.bbapap.2013.06.017.
  • Ben Halima, N.; Khemakhem, B.; Fendri, I.; Ogata, H.; Baril, P.; Pichon, C.; Abdelkafi, S. Identification of a New Oat Beta-Amylase by Functional Proteomics. BBA-Proteins Proteom 2016, 1864, 52–61. doi: 10.1016/j.bbapap.2015.10.001.
  • Mihajlovski, K.R.; Radovanović, N.R.; Veljović, Đ.N.; Šiler-Marinković, S.S.; Dimitrijević-Branković, S.I. Improved Beta-Amylase Production on Molasses and Sugar Beet Pulp by a Novel Strain Paenibacillus chitinolyticus CKS1. Ind. Crop. Prod. 2016, 80, 115–122. doi: 10.1016/j.indcrop.2015.11.025.
  • Kocabay, S.; Çetinkaya, S.; Akkaya, B.; Yenidünya, A.F. Characterization of Thermostable Beta-Amylase Isozymes from Lactobacillus fermentum. Int. J. Biol. Macromol. 2016, 93, 195–202. doi: 10.1016/j.ijbiomac.2016.08.078.
  • Vajravijayan, S.; Pletnev, S.; Mani, N.; Pletneva, N.; Nandhagopal, N.; Gunasekaran, K. Structural Insights on Starch Hydrolysis by Plant β-Amylase and Its Evolutionary Relationship with Bacterial Enzymes. Int. J. Biol. Macromol. 2018, 113, 329–337. PMID: 28466111.
  • Koide, T.; Ohnishi, Y.; Horinouchi, S. Characterization of Recombinant Beta-Amylases from Oryza sativa. Biosci. Biotech. Bioch. 2011, 75, 793–796. doi: 10.1271/bbb.100872. PMID: 21512221.
  • Niu, C.; Zheng, F.; Li, Y.; Li, Q. Process Optimization of the Extraction Condition of β-Amylase from Brewer’s Malt and Its Application in the Maltose Syrup Production. Biotechnol. App. Biochem. 2018, 65(4), 639–647. doi: 10.1002/bab.1650.
  • Das, R.; Talat, M.; Srivastava, O.N.; Kayastha, A.M. Covalent Immobilization of Peanut β-Amylase for Producing Industrial Nano-Biocatalysts: A Comparative Study of Kinetics, Stability and Reusability of the Immobilized Enzyme. Food Chem. 2018, 245, 488–499.
  • Masataka, H.; Shigetaka, O. Studies on β-Amylase of Bacillus megaterium Strain No. 32. J. Agr. Biol. Chem. 1974, 38, 1023–1029. doi: 10.1007/s10295-015-1719-1. PMID: 26707948.
  • Yamaguchi, S. The Quest for Industrial Enzymes from Microorganisms. Biosci. Biotech. Bioch. 2017, 81, 54–58. doi: 10.1080/09168451.2016.1248371.
  • Folasade, M.; Folasade, M. Production, Purification and Prtial Characterization of Moderately Thermostable β-Amylase from Bacillus polymyxa BWB-01. Curr. Biotechnol. 2015, 4, 187–196. doi: 10.1155/2017/5479762. PMID: 29250543.
  • Yamashiro, K.; Yokobori, S.-I.; Koikeda, S.; Yamagishi, A. Improvement of Bacillus circulans Beta-Amylase Activity Attained Using the Ancestral Mutation Method. Protein Eng. Des. Sel. 2010, 23, 519–528. doi: 10.1093/protein/gzq021.
  • Ali, S.; Wahid, A.; Nisar, S. Kinetic Evidence of a Thermostable Beta-Amylase from Chemically Improved Mutant Strain of Bacillus subtilis. Pak. J. Zool. 2014, 46, 1415–1423.
  • Hyun, H.H.; Zeikus, J.G. General Biochemical Characterization of Thermostable Extracellular Beta-Amylase from Clostridium thermosulfurogenes. Appl. Environ. Microbiol. 1985, 49, 1162–1167. PMID: 16346789.
  • Li, X.; Yu, H.Y. Purification and Characterization of Novel Organic-Solvent-Tolerant Beta-Amylase and Serine Protease from a Newly Isolated Salimicrobium halophilum Strain LY20. FEMS Microbiol. Lett. 2012, 329, 204–211. doi: 10.1111/j.1574-6968.2012.02522.x. PMID: 22324975.
  • Li, X.; Yu, H.Y. Extracellular Production of Beta-Amylase by a Halophilic Isolate, Halobacillus sp. LY9. J. Ind. Microbiol. Biotechnol. 2011, 38, 1837–1843. doi: 10.1007/s10295-011-0972-1. PMID: 21505914.
  • Ha, Y.M.; Lee, D.G.; Yoon, J.H.; Park, Y.-H.; Kim, Y.J. Rapid and Simple Purification of a Novel Extracellular Beta-Amylase from Bacillus sp. Biotechnol. Lett. 2011, 23, 1435–1438. doi: 10.1007/s10529-017-2357-7.
  • Srivastava, G.; Singh, V.K.; Kayastha, A.M. Identification of Active Site Residues of Fenugreek Beta-Amylase: Chemical Modification and in Silico Approach. Plant Physiol. Bioch. 2014, 83, 217–224. doi: 10.1016/j.plaphy.2014.08.005.
  • Hirata, A.; Adachi, M.; Utsumi, S.; Mikami, B. Engineering of the pH Optimum of Bacillus cereus Beta-Amylase: Conversion of the pH Optimum from a Bacterial Type to a Higher-Plant Type. Biochemistry. 2004, 43, 12523–12531.
  • Wallace, R.J.; Gropp, J.; Dierick, N.; Costa, L.G.; Martelli, G.; Brantom, P.G.; Bampidis, V.; Renshaw, D.W.; Leng, L. Risks Associated with Endotoxins in Feed Additives Produced by Fermentation. Environ. Health 2016, 15, 5. doi: 10.1186/s12940-016-0087-2. PMID: 26768246.
  • Tran, D.T.M.; Phan, T.T.P.; Huynh, T.K.; Dang, N.T.K.; Huynh, P.T.K.; Nguyen, T.M.; Truong, T.T.T.; Tran, T.L.; Schumann, W.; Nguyen, H.D.; et al. Development of Inducer-Free Expression Plasmids Based on IPTG-Inducible Promoters for Bacillus Subtilis. Microb. Cell Fact. 2017, 16, 130 doi: 10.1186/s12934-017-0747-0. PMID: 28743271.
  • Zhang, K.; Su, L.Q.; Duan, X.G.; Liu, L.; Wu, J. High-Level Extracellular Protein Production in Bacillus subtilis Using an Optimized Dual-Promoter Expression System. Microb. Cell. Fact. 2017, 16, 32. doi: ARTN 3210.1186/s12934-017-0649-1.
  • He, P.; Zhang, Z.; Cai, D.; Chen, Y.; Wang, H.; Wei, X.; Li, S.; Chen, S. High-Level Production of Alpha-Amylase by Manipulating the Expression of Alanine Racamase in Bacillus licheniformis. Biotechnol. Lett. 2017, 39, 1389–1394. doi: 10.1007/s10529-017-2359-5. PMID: 28536940.
  • Cai, D.; Wang, H.; He, P.; Zhu, C.; Wang, Q.; Wei, X.; Nomura, C.T.; Chen, S. A Novel Strategy to Improve Protein Secretion via Overexpression of the SppA Signal Peptide Peptidase in Bacillus licheniformis. Microb. Cell. Fact. 2017, 16, 70. doi: 10.1186/s12934-017-0688-7. PMID: 28438200.
  • Yue, J.; Fu, G.; Zhang, D.; Wen, J. A New Maltose-Inducible High-Performance Heterologous Expression System in Bacillus subtilis. Biotechnol. Lett. 2017, 39, 1237–1244. doi: 10.1007/s10529-017-2357-7.
  • Hu, W.; Xiang, J.-Y.; Kong, P.; Liu, L.; Xie, Q.; Xiang, H. Expression and Characterization of a Single-Chain Variable Fragment against Human LOX-1 in Escherichia coli and Brevibacillus choshinensis. J. Microbiol. Biotechnol. 2017, 27, 965–974. doi: 10.4014/jmb.1702.02007. PMID: 28274103.
  • D’Urzo, N.; Martinelli, M.; Nenci, C.; Brettoni, C.; Telford, J.L.; Maione, D. High-Level Intracellular Expression of Heterologous Proteins in Brevibacillus choshinensis SP3 under the Control of a Xylose Inducible Promoter. Microb. Cell. Fact. 2013, 12, 12. doi: 10.1186/1475-2859-12-12. PMID: 23374160.
  • Zou, C.; Duan, X.; Wu, J. Efficient Extracellular Expression of Bacillus Deramificans Pullulanase in Brevibacillus choshinensis. J. Ind. Microbiol. Biotechnol. 2016, 43, 495–504. doi: 10.1007/s10295-015-1719-1. PMID: 26707948.
  • Zou, C.; Duan, X.; Wu, J. Magnesium Ions Increase the Activity of Bacillus Deramificans Pullulanase Expressed by Brevibacillus choshinensis. Appl. Microbiol. Biotechnol. 2016, 100, 7115–7123. doi: 10.1007/s00253-016-7386-y. PMID: 27026175.
  • Teramura, N.; Tanaka, K.; Iijima, K.; Hayashida, O.; Suzuki, K.; Hattori, S.; Irie, S. Cloning of a Novel Collagenase Gene from the Gram-Negative Bacterium Grimontia (Vibrio) Hollisae 1706B and its Efficient Expression in Brevibacillus choshinensis. J. Bacteriol. 2011, 193, 3049–3056. doi: 10.1128/JB.01528-10. PMID: 21515782.
  • Lin, Q.; Lin, J. Effects of Nitrogen Source and Concentration on Biomass and Oil Production of a Scenedesmus Rubescens like Microalga. Biores. Technol. 2011, 102, 1615–1621. doi: 10.1016/j.biortech.2010.09.008. PMID: 20875734.
  • Levin, L.; Melignani, E.; Ramos, A.M. Effect of Nitrogen Sources and Vitamins on Ligninolytic Enzyme Production by Some White-Rot Fungi. Dye Decolorization by Selected Culture Filtrates. Biores. Technol. 2010, 101, 4554–4563. doi: 10.1016/j.biortech.2010.01.102. PMID: 20153961.
  • Papaneophytou, C.P.; Kontopidis, G. Statistical Approaches to Maximize Recombinant Protein Expression in Escherichia coli: A General Review. Protein Exp. Purif. 2014, 94, 22–32. doi: 10.1016/j.pep.2013.10.016. PMID: 24211770.
  • Ran, H.; Wu, J.; Wu, D.; Duan, X. Enhanced Production of Recombinant Thermobifida fusca Isoamylase in Escherichia coli MDS42. Appl. Biochem. Biotechnol. 2016, 180, 464–476. doi: 10.1007/s12010-016-2110-z. PMID: 27179515.
  • Duan, X.; Hu, S.; Qi, X.; Gu, Z.; Wu, J. Optimal Extracellular Production of Recombinant Bacillus circulans β-Galactosidase in Escherichia coli BL21(DE3). Process Biochem. 2017, 53, 17–24. doi: 10.1021/jf200033m. PMID: 21417392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.