220
Views
4
CrossRef citations to date
0
Altmetric
Articles

Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight

, &

References

  • Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresource Tech. 2010, 101, S75–S77.
  • Valente, O.S.; da Silva, M.J.; Pasa, V.M.D.; Belchior, C.R.P.; Sodre, J.R. Fuel Consumption and Emissions from a Diesel Power Generator Fuelled with Castor Oil and Soybean Biodiesel. Fuel. 2010, 89, 3637–3642.
  • Stephenson, A.L.; von Blottnitz, H.; Brent, A.C.; Dennis, J.S.; Scott, S.A. Global Warming Potential and Fossil-Energy Requirements of Biodiesel Production Scenarios in South Africa. Energy Fuels. 2010, 24, 2489–2499.
  • Plaza, M.; Cifuentes, A.; Ibanez, E. In the Search of New Functional Food Ingredients from Algae. Trends Food Sci. Technol. 2008, 19, 31–39.
  • Mabeau, S.; Fleurence, J. Seaweed in Food-Products - Biochemical and Nutritional Aspects. Trends Food Sci. Technol. 1993, 4, 103–107.
  • Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648.
  • Chisti, Y. Biodiesel from Microalgae Beats Bioethanol. Trends Biotechnol. 2008, 26, 126–131.
  • Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from Algae: Challenges and Prospects. Curr. Opin. Biotechnol. 2010, 21, 277–286.
  • Cao, H.C.; Zhang, Z.L.; Wu, X.W.; Miao, X.L. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella Pyrenoidosa through In Situ Transesterification. Biomed Res. Int. 2013, 1–6.
  • Han, S.F.; Jin, W.B.; Chen, Y.G.; Tu, R.J.; Abomohra, A. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment. Appl. Biochem. Biotechnol. 2016, 180, 1043–1055.
  • Liu, A.Y.; Chen, W.; Zheng, L.L.; Song, L.R. Identification of High-lipid Producers for Biodiesel Production from Forty-three Green Algal Isolates in China. Prog. Nat. Sci. Mater. Int. 2011, 21, 269–276.
  • Griffiths, M.J.; Harrison, S.T.L. Lipid Productivity as a Key Characteristic for Choosing Algal Species for Biodiesel Production. J. Appl. Phycol. 2009, 21, 493–507.
  • Decostere, B.; Alvarado, A.; Sanchez, E.M.; Pauta, G.C.; Rousseau, D.P.L.; Nopens, I.; Hulle, S. W.H. Model Based Analysis of the Growth Kinetics of Microalgal Species Residing in a Waste Stabilization Pond. J. Chem. Technol. Biotechnol. 2017, 92, 1362–1369.
  • Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112.
  • Higgins, B.T.; Labavitch, J.M.; VanderGheynst, J.S. Co-Culturing Chlorella Minutissima with Escherichia coli Can Increase Neutral Lipid Production and Improve Biodiesel Quality. Biotechnol. Bioeng. 2015, 112, 1801–1809.
  • Kamyab, H.; Din, M.F.M.; Lee, C.T.; Keyvanfar, A.; Shafaghat, A.; Abd Majid, M.Z.; Ponraj, M.; Yun, T.X. Lipid Production by Microalgae Chlorella Pyrenoidosa Cultivated in Palm Oil Mill Effluent (POME) Using Hybrid Photo Bioreactor (HPBR). Desalination and Water Treatment 2015, 55, 3737–3749.
  • Qin, L.; Shu, Q.; Wang, Z.M.; Shang, C.H.; Zhu, S.N.; Xu, J.L.; Li, R.Q.; Zhu, L.D.; Yuan, Z.H. Cultivation of Chlorella Vulgaris in Dairy Wastewater Pretreated by UV Irradiation and Sodium Hypochlorite. Appl. Biochem. Biotechnol. 2014, 172, 1121–1130.
  • Wang, L.A.; Min, M.; Li, Y.C.; Chen, P.; Chen, Y.F.; Liu, Y.H.; Wang, Y.K.; Ruan, R. Cultivation of Green Algae Chlorella sp in Different Wastewaters from Municipal Wastewater Treatment Plant. Appl. Biochem. Biotechnol. 2010, 162, 1174–1186.
  • Girard, J.M.; Roy, M.L.; Ben Hafsa, M.; Gagnon, J.; Faucheux, N.; Heitz, M.; Tremblay, R.; Deschenes, J. S. Mixotrophic Cultivation of Green Microalgae Scenedesmus Obliquus on Cheese Whey Permeate for Biodiesel Production. Algal Res. Biomass Biofuels Bioproducts. 2014, 5, 241–248.
  • Stockenreiter, M.; Haupt, F.; Seppala, J.; Tamminen, T.; Spilling, K. Nutrient Uptake and Lipid Yield in Diverse Microalgal Communities Grown in Wastewater. Algal Res. Biomass Biofuels Bioproducts. 2016, 15, 77–82.
  • Gardner, R.D.; Lohman, E.; Gerlach, R.; Cooksey, K.E.; Peyton, B.M. Comparison of CO2 and Bicarbonate as Inorganic Carbon Sources for Triacylglycerol and Starch Accumulation in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2013, 110, 87–96.
  • Cabanelas, I.T.D.; Slegers, P.M.; Böpple, H.; Kleinegris, D.M.M.; Wijffels, R.H.; Barbosa, M.J. Outdoor Performance of Chlorococcum Littorale at Different Locations. Algal Res. 2017, 27, 55–64.
  • Arachchige, U.S.P.R.; Kawan, D.; Tokheim, L.A.; Melaaen, M.C. Model Development for CO2 Capture in the Cement Industry. Int. J. Model. Opt. 2013, 3, 535–540.
  • Yang, Z.K.; Niu, Y.F.; Ma, Y.H.; Xue, J.; Zhang, M.H.; Yang, W.D.; Liu, J.S.; Lu, S.H.; Guan, Y.F.; Li, H.Y. Molecular and Cellular Mechanisms of Neutral Lipid Accumulation in Diatom following Nitrogen Deprivation. Biotechnol. Biofuels. 2013, 6, 67.
  • Levitan, O.; Dinamarca, J.; Zelzion, E.; Lun, D.S.; Guerra, L.T.; Kim, M.K.; Kim, J.; Van Mooy, B.A. S.; Bhattacharya, D.; Falkowski, P.G. Remodeling of Intermediate Metabolism in the Diatom Phaeodactylum Tricornutum under Nitrogen Stress. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 412–417. 10.1073/pnas.1419818112
  • Ratledge, C.; Wynn, J.P. The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–51. Doi 10.1016/S0065-2164(02)51000-5
  • Botham, P.A.; Ratledge, C. A Biochemical Explanation for Lipid Accumulation in Candida 107 and Other Oleaginous Micro-Organisms. J. Gen. Microbiol. 1979, 114, 361–375.
  • Price, N.M.; Harrison, P.J. Comparison of Methods for the Analysis of Dissolved Urea in Seawater. Mar. Biol. 1987, 94, 307–317.
  • Kanagasabapathy, A.S.; Kumari, S. Guidelines on Standard Operating Procedures for Clinical Chemistry. World Health Organization (WHO), Regional Office for South-East Asia, New Delhi; 2000.
  • Rahmatullah, M.; Boyde, T.R.C. Improvements in the Determination of Urea Using Diacetyl Monoxime - Methods with and without Deproteinization. Clinica Chimica Acta. 1980, 107, 3–9.
  • Muthuraj, M.; Kumar, V.; Palabhanvi, B.; Das, D. Evaluation of Indigenous Microalgal Isolate Chlorella sp FC2 IITG as a Cell Factory for Biodiesel Production and Scale up in Outdoor Conditions. J. Ind. Microbiol. Biotechnol. 2014, 41, 499–511.
  • Philichi, T.L.; Stenstrom, M.K. Effects of Dissolved-Oxygen Probe Lag on Oxygen-Transfer Parameter-Estimation. J. Water Poll. Control Fed. 1989, 61, 83–86.
  • Garcia-Ochoa, F.; Gomez, E. Bioreactor Scale-up and Oxygen Transfer Rate in Microbial Processes: An Overview. Biotechnol. Adv. 2009, 27, 153–176.
  • Camacho, F.G.; Gomez, A.C.; Fernandez, F.G.A.; Sevilla, J.F.; Grima, E.M. Use of Concentric-Tube Airlift Photobioreactors for Microalgal Outdoor Mass Cultures. Enzyme Microb. Tech. 1999, 24, 164–172.
  • Maleki, S.A.M.; Hizam, H.; Gomes, C. Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited. Energies. 2017, 10, 134.
  • Pereira, M.C.; Rabl, A. The Average Distribution of Solar Radiation: Correlations between Diffuse and Hemispherical and between Daily and Hourly Insolation Values. Solar Energy. 1979, 22, 155–164.
  • Liu, B.Y.H.; Jordan, R.C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation. Solar Energy. 1960, 7, 53–65.
  • Geider, R.J.; Osborne, B.A. Respiration and Microalgal Growth: A Review of the Quantitative Relationship between Dark Respiration and Growth. New Phytol. 1989, 112, 327–341.
  • Morgan, O.M.; Maass, O. An Investigation of the Equilibria Existing in Gas-Water Systems Forming Electrolytes. Can. J. Res. 1931, 5, 162–199.
  • Carroll, J.J.; Slupsky, J.D.; Mather, A.E. The Solubility of Carbon-Dioxide in Water at Low-Pressure. J. Phys. Chem. Ref. Data. 1991, 20, 1201–1209.
  • Ogbonna, J.C.; Yada, H.; Tanaka, H. Light Supply Coefficient - A New Engineering Parameter for Photobioreactor Design. J. Ferment. Bioeng. 1995, 80, 369–376.
  • Tang, D.H.; Han, W.; Li, P.L.; Miao, X.L.; Zhong, J.J. CO2 Biofixation and Fatty Acid Composition of Scenedesmus Obliquus and Chlorella Pyrenoidosa in Response to Different CO2 Levels. Biores. Technol. 2011, 102, 3071–3076.
  • Christie, E.K.; Moorby, J. Physiological Responses of Semiarid Grasses. I. The Influence of Phosphorus Supply on Growth and Phosphorus Absorption. Australian J. Agricultural Res. 1979, 26, 423–436.
  • Loneragan, J.F.; Grunes, D.L.; Welch, R.M.; Aduayi, E.A.; Tengah, A.; Lazar, V.A.; Cary, E.E. Phosphorus Accumulation and Toxicity in Leaves in Relation to Zinc Supply. Soil Sci. Soc. Am. J. 1982, 46, 345–352.
  • Satoh, A.; Kurano, N.; Miyachi, S. Inhibition of Photosynthesis by Intracellular Carbonic Anhydrase in Microalgae under Excess Concentrations of CO2. Photosynth Res. 2001, 68, 215–224.
  • Hu, Q.J.; Xiang, W.Z.; Dai, S.K.; Li, T.; Yang, F.F.; Jia, Q.K.; Wang, G.H.; Wu, H.L. The Influence of Cultivation Period on Growth and Biodiesel Properties of Microalga Nannochloropsis Gaditana 1049. Biores. Technol. 2015, 192, 157–164.
  • Adesanya, V.O.; Davey, M.P.; Scott, S.A.; Smith, A.G. Kinetic Modelling of Growth and Storage Molecule Production in Microalgae under Mixotrophic and Autotrophic Conditions. Biores. Technol. 2014, 157, 293–304.
  • Mujtaba, G.; Choi, W.; Lee, C.G.; Lee, K. Lipid Production by Chlorella Vulgaris after a Shift from Nutrient-Rich to Nitrogen Starvation Conditions. Biores. Technol. 2012, 123, 279–283.
  • Ho, S.H.; Nakanishi, A.; Ye, X.T.; Chang, J.S.; Hara, K.; Hasunuma, T.; Kondo, A. Optimizing Biodiesel Production in Marine Chlamydomonas sp JSC4 through Metabolic Profiling and an Innovative Salinity-Gradient Strategy. Biotechnol. Biofuels. 2014, 7, 97–113.
  • Li, Y.Q.; Han, F.X.; Xu, H.; Mu, J.X.; Chen, D.; Feng, B.; Zeng, H.Y. Potential Lipid Accumulation and Growth Characteristic of the Green Alga Chlorella with Combination Cultivation Mode of Nitrogen (N) and Phosphorus (P). Biores. Technol. 2014, 174, 24–32.
  • Alvarez-Diaz, P.D.; Ruiz, J.; Arbib, Z.; Barragan, J.; Garrido-Perez, C.; Perales, J.A. Lipid Production of Microalga Ankistrodesmus Falcatus Increased by Nutrient and Light Starvation in a Two-Stage Cultivation Process. Appl. Biochem. Biotechnol. 2014, 174, 1471–1483.
  • Montoya, E.Y.O.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Converti, A.; de Carvalho, J.C.M. Production of Chlorella Vulgaris as a Source of Essential Fatty Acids in a Tubular Photobioreactor Continuously Fed with Air Enriched with CO2 at Different Concentrations. Biotechnol. Prog. 2014, 30, 916–922.
  • Chaiprapat, S.; Sasibunyarat, T.; Charnnok, B.; Cheirsilp, B. Intensifying Clean Energy Production through Cultivating Mixotrophic Microalgae from Digestates of Biogas Systems: Effects of Light Intensity, Medium Dilution, and Cultivating Time. Bioenerg. Res. 2017, 10, 103–114.
  • Zhou, X.P.; Xia, L.; Zhang, D.; Hu, C.X. Effect of Outdoor Conditions on the Growth and Lipid Accumulation of Six Green Algae. Energy Sources Part A-Rec. Utilization Env. Effects. 2016, 38, 82–87.
  • Chiu, S.Y.; Kao, C.Y.; Tsai, M.T.; Ong, S.C.; Chen, C.H.; Lin, C.S. Lipid Accumulation and CO(2) Utilization of Nannochloropsis Oculata in Response to CO(2) Aeration. Biores. Technol. 2009, 100, 833–838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.