192
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effects of microbial volatile organic compounds on Ganoderma lucidum growth and ganoderic acids production in Co-v-cultures (volatile co-cultures)

, , , , , ORCID Icon & show all

Reference

  • Zhong, J.J.; Xiao, J.H. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction. In Advances in biochemical engineering/biotechnology. Springer. 2009; 113, 79–150.
  • Paterson, R.R.M. Ganoderma - A Therapeutic Fungal Biofactory. Phytochemistry. 2006, 67, 1985–2001.
  • Baby, S.; Johnson, A.J.; Govindan, B. Secondary Metabolites from Ganoderma. Phytochemistry. 2015, 114, 66–101.
  • Paliya, B.S. Verma, S.; Chaudhary, H.S. Major Bioactive Metabolites of the Medicinal Mushroom: Ganoderma Lucidum. Int. J. Pharm. Sci. Res. 2014, 6, 13.
  • Fang, Q.H.; Zhong, J.J. Submerged Fermentation of Higher Fungus Ganoderma Lucidum for Production of Valuable Bioactive Metabolites-Ganoderic Acid and Polysaccharide. Biochem. Eng. J. 2002, 10, 61–65.
  • Zhong, J.J.; Tang, Y.J. Submerged Cultivation of Medicinal Mushrooms for Production of Valuable Bioactive Metabolites. In Biomanufacturing. Springer, Berlin Heidelberg, 2004; pp. 25–59.
  • Tang, Y.J.; Zhong, J.J. Fed-Batch Fermentation of Ganoderma Lucidum for Hyperproduction of Polysaccharide and Ganoderic Acid. Enzyme. Microb. Technol. 2002, 31, 20–28.
  • Fang, Q.H.; Tang, Y.J.; Zhong, J.J. Significance of Inoculation Density Control in Production of Polysaccharide and Ganoderic Acid by Submerged Culture of Ganoderma Lucidum. Process. Biochem. 2002, 37, 1375–1379.
  • Zhou, J.S.; Ji, S.L.; Ren, M.F.; He, Y.L.; Jing, X.R.; Xu, J.W. Enhanced Accumulation of Individual Ganoderic Acids in a Submerged Culture of Ganoderma Lucidum by the Overexpression of Squalene Synthase Gene. Biochem. Eng. J. 2014, 90, 178–183.
  • Ren, A.; Qin, L.; Shi, L.; Dong, X.; Mu, D.S.; Li, Y.X.; Zhao, M.W. Methyl Jasmonate Induces Ganoderic Acid Biosynthesis in the Basidiomycetous Fungus Ganoderma Lucidum. Bioresour. Technol. 2010, 101, 6785–6790.
  • Zhao, W.; Xu, J.W.; Zhong, J.J. Enhanced Production of Ganoderic Acids in Static Liquid Culture of Ganoderma Lucidum under Nitrogen-Limiting Conditions. Bioresour. Technol. 2011, 102, 8185–8190.
  • Xu, Y.N.; Xia, X.X.; Zhong, J.J. Induced Effect of Na + on Ganoderic Acid Biosynthesis in Static Liquid Culture of Ganoderma Lucidum via Calcineurin Signal Transduction. Biotechnol. Bioeng. 2013, 110, 1913–1923.
  • Xu, Y.N.; Xia, X.X.; Zhong, J.J. Induction of Ganoderic Acid Biosynthesis by Mn2+ in Static Liquid Cultivation of Ganoderma Lucidum. Biotechnol. Bioeng. 2014, 111, 2358–2365.
  • You, B.J.; Lee, M.H.; Tien, N.; Lee, M.S.; Hsieh, H.C.; Tseng, L.H.; Chung, Y.L.; Lee, H.Z. A Novel Approach to Enhancing Ganoderic Acid Production by Ganoderma Lucidum Using Apoptosis Induction. PLoS ONE. 2013, 8, e53616.
  • Zhang, J.; Zhong, J.J.; Geng, A. Improvement of Ganoderic Acid Production by Fermentation of Ganoderma Lucidum with Cellulase as an Elicitor. Process. Biochem 2014, 49, 1580–1586.
  • Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.L. Metabolite Induction via Microorganism co-Culture: A Potential Way to Enhance Chemical Diversity for Drug Discovery. Biotechnol. Adv. 2014, 32, 1180–1204.
  • Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial Communication Leading to the Activation of Silent Fungal Secondary Metabolite Gene Clusters. Front. Microbiol. 2015, 6, 299.
  • Piechulla, B.; Degenhardt, J. The Emerging Importance of Microbial Volatile Organic Compounds. Plant. Cell Environ. 2014, 37, 811–812.
  • Hung, R.; Lee, S.; Bennett, J.W. Fungal Volatile Organic Compounds and Their Role in Ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405.
  • Effmert, U.; Kalderás, J.; Warnke, R.; Piechulla, B. Volatile Mediated Interactions between Bacteria and Fungi in the Soil. J. Chem. Ecol. 2012, 38, 665–703.
  • Wheatley, R. The Consequences of Volatile Organic Compound Mediated Bacterial and Fungal Interactions. Antonie Van Leeuwenhoek 2002, 81, 357–364.
  • Schulz, S.; Dickschat, J.S. Bacterial Volatiles: The Smell of Small Organisms. Nat. Prod. Rep. 2007, 24, 814–842.
  • Farag, M.A.; Zhang, H.; Ryu, C.-M. Dynamic Chemical Communication between Plants and Bacteria through Airborne Signals: Induced Resistance by Bacterial Volatiles. J. Chem. Ecol. 2013, 39, 1007–1018.
  • Liu, X.-M.; Zhang, H. The Effects of Bacterial Volatile Emissions on Plant Abiotic Stress Tolerance. Front. Plant. Sci. 2015, 6, 774.
  • Weisskopf, L. The Potential of Bacterial Volatiles for Crop Protection against Phytophathogenic Fungi. Formatex Research Center 2013, 2, 1352–1363.
  • Minerdi, D.; Bossi, S.; Gullino, M.L.; Garibaldi, A. Volatile Organic Compounds: A Potential Direct Long‐Distance Mechanism for Antagonistic Action of Fusarium oxysporum Strain MSA 35. J. Appl. Environ. Microbiol. 2009, 11, 844–854.
  • Bruce, A.; Stewart, D.; Verrall, S.; Wheatley, R.E. Effect of Volatiles from Bacteria and Yeast on the Growth and Pigmentation of Sapstain Fungi. Int. Biodeterior. Biodegradation. 2003, 51, 101–108.
  • Chin, S.K.; Law, C.L. Maximizing the Retention of Ganoderic Acids and Water-Soluble Polysaccharides Content of Ganoderma Lucidum Using Two-Stage Dehydration Method. Drying. Technol. 2014, 32, 644–656.
  • Cantore, P.L.; Giorgio, A.; Iacobellis, N.S. Bioactivity of Volatile Organic Compounds Produced by Pseudomonas tolaasii. Front. Microbiol. 2015, 6, 1082.
  • Zadražil, F. Influence of CO 2 Concentration on the Mycelium Growth of Three Pleurotus Species. European J. Appl. Microbiol. 1975, 1, 327–335.
  • Antonio, J.; Thomas, R. Carbon Dioxide Stimulation of Hyphal Growth of the Cultivated Mushroom,(Lange) Sing. Mushroom. Sci. 1972, 8, 623–629.
  • Kai, M.; Haustein, M.; Molina, F.; Petri, A.; Scholz, B.; Piechulla, B. Bacterial Volatiles and Their Action Potential. Appl. Microbiol. Biotechnol. 2009, 81, 1001–1012.
  • Zou, C.-S.; Mo, M.-H.; Gu, Y.-Q.; Zhou, J.-P.; Zhang, K.-Q. Possible Contributions of Volatile-Producing Bacteria to Soil Fungistasis. Soil. Biol. Biochem. 2007, 39, 2371–2379.
  • Herrington, P.; Craig, J.; Chea, C.; Sheridan, J. Inhibition of Spore Germination by Volatiles from Streptomyces griseoruber. Soil. Biol. Biochem. 1985, 17, 897–898.
  • Herrington, P.; Craig, J.; Sheridan, J. Methyl Vinyl Ketone: A Volatile Fungistatic Inhibitor from Streptomyces griseoruber. S Soil. Biol. Biochem. 1987, 19, 509–512.
  • Moore-Landecker, E.; Stotzky, G. Inhibition of Fungal Growth and Sporulation by Volatile Metabolites from Bacteria. Can. J. Microbiol. 1972, 18, 957–962.
  • Wright, S.; Thompson, R.J. Bacillus Volatiles Antagonize Cyanobacteria. FEMS. Microbiol. Lett. 1985, 30, 263–267.
  • Mckee, N.D.; Robinson, P.M. Production of Volatile Inhibitors of Germination and Hyphal Extension by Geotrichum candidum. Trans. Br. Mycol. Soc. 1988, 91, 157–160.
  • Fiddaman, P.; Rossall, S. The Production of Antifungal Volatiles by Bacillus subtilis. J. Appl. Bacteriol. 1993, 74, 119–126.
  • Giorgio, A.D.; Stradis, A.; Cantore, P.L.; Iacobellis, N.S. Biocide Effects of Volatile Organic Compounds Produced by Potential Biocontrol Rhizobacteria on Sclerotinia sclerotiorum. Front. Microbiol. 2015, 6, 1056.
  • Elkahoui, S.; Djébali, N.; Yaich, N.; Azaiez, S.; Hammami, M.; Essid, R.; Limam, F. Antifungal Activity of Volatile Compounds-Producing Pseudomonas P2 Strain against Rhizoctonia solani. World J. Microbiol. Biotechnol. 2015, 31, 175–185.
  • Boukaew, S.; Plubrukam, A.; Prasertsan, P. Effect of Volatile Substances from Streptomyces Philanthi RM-1-138 on Growth of Rhizoctonia solani on Rice Leaf. Bio. Control. 2013, 58, 471–482.
  • Schmidt, R.; Cordovez, V.; de Boer, W.; Raaijmakers, J.; Garbeva, P. Volatile Affairs in Microbial Interactions. Isme J. 2015, 9, 2329–2335.
  • Schalchli, H.; Tortella, G.; Rubilar, O.; Parra, L.; Hormazabal, E.; Quiroz, A. Fungal Volatiles: An Environmentally Friendly Tool to Control Pathogenic Microorganisms in Plants. Crit. Rev. Biotechnol. 2016, 36, 144–152.
  • Hunziker, L.; Bönisch, D.; Groenhagen, U.; Bailly, A.; Schulz, S.; Weisskopf, L. Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora Infestans. Appl. Environ. Microbiol. 2015, 81, 821–830.
  • Campos, M.; Jacobs-Wagner, C.; Strobel, S.A. Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor Albus Induces Bacterial Cell Death through DNA Damage. J. Appl. Environ. Microbiol. 2015, 81, 1147–1156.
  • Li, X.-Y.; Mao, Z.-C.; Wu, Y.-X.; Ho, H.-H.; He, Y.-Q. Comprehensive Volatile Organic Compounds Profiling of Bacillus Species with Biocontrol Properties by Head Space Solid Phase Microextraction with Gas Chromatography-Mass Spectrometry. Biocontrol. Sci. Techn. 2015, 25, 132–143.
  • Zhang, W.X.; Zhong, J.J. Oxygen Limitation Improves Ganoderic Acid Biosynthesis in Submerged Cultivation of Ganoderma Lucidum. Biotechnol. Bioprocess. Eng. 2013, 18, 972–980.
  • Rast, D.; Bachofen, R. Carboxylierungsreaktionen in Agaricus Bisporus. Archiv Mikrobiol. 1967, 58, 339–356.
  • Bennett, J.W.; Inamdar, A.A. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins. (Basel) 2015, 7, 3785–3804.
  • Venkataraman, A.; Rosenbaum, M.A.; Werner, J.J.; Winans, S.C.; Angenent, L.T. Metabolite Transfer with the Fermentation Product 2, 3-Butanediol Enhances Virulence by Pseudomonas aeruginosa. Isme J. 2014, 8, 1210–1220.
  • Fang, Q.-H.; Zhong, J.-J. Effect of Initial pH on Production of Ganoderic Acid and Polysaccharide by Submerged Fermentation of Ganoderma Lucidum. Process. Biochem. 2002, 37, 769–774.
  • Tang, Y.J.; Zhang, W.; Zhong, J.J. Performance Analyses of a pH-Shift and DOT-Shift Integrated Fed-Batch Fermentation Process for the Production of Ganoderic Acid and Ganoderma Polysaccharides by Medicinal Mushroom Ganoderma Lucidum. Bioresour. Technol. 2009, 100, 1852–1859.
  • Létoffé, S.; Audrain, B.; Bernier, S.P.; Delepierre, M.; Ghigo, J.-M. Aerial Exposure to the Bacterial Volatile Compound Trimethylamine Modifies Antibiotic Resistance of Physically Separated Bacteria by Raising Culture Medium pH. mBio. 2014, 5, 944–913.
  • Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H2S: A Universal Defense against Antibiotics in Bacteria. Science 2011, 334, 986–990.
  • Zhou, W.-W.; Ma, B.; Tang, Y.-J.; Zhong, J.-J.; Zheng, X. Enhancement of Validamycin a Production by Addition of Ethanol in Fermentation of Streptomyces hygroscopicus 5008. Bioresour. Technol. 2012, 114, 616–621.
  • Shi, L.; Gong, L.; Zhang, X.; Ren, A.; Gao, T.; Zhao, M. The Regulation of Methyl Jasmonate on Hyphal Branching and GA Biosynthesis in Ganoderma lucidum Partly via ROS Generated by NADPH Oxidase. Fungal. Genet. Biol. 2015, 81, 201–211.
  • You, B.J.; Chang, W.T.; Chung, K.R.; Kuo, Y.H.; Yang, C.S.; Tien, N.; Hsieh, H.C.; Lai, C.C.; Lee, H.Z. Effect of Solid-Medium Coupled with Reactive Oxygen Species on Ganoderic Acid Biosynthesis and MAP Kinase Phosphorylation in Ganoderma Lucidum. Food. Res. Int. 2012, 49, 634–640.
  • Li, N.; Liu, X.H.; Zhou, J.; Li, Y.X.; Zhao, M.W. Analysis of Influence of Environmental Conditions on Ganoderic Acid Content in Ganoderma Lucidum Using Orthogonal Design. J. Microbiol. Biotechnol. 2006, 16, 1940–1946.
  • Cui, M.L.; Yang, H.Y.; He, G.Q. Submerged Fermentation Production and Characterization of Intracellular Triterpenoids from Ganoderma Lucidum Using HPLC-ESI-MS. J. Zhejiang Univ. Sci. B. 2015, 16, 998–1010.
  • Zapata, P.; Rojas, D.; Atehortúa, L. Production of Biomass, Polysaccharides, and Ganoderic Acid Using Non-Conventional Carbon Sources under Submerged Culture of the Lingzhi or Reishi Medicinal Mushroom, Ganoderma Lucidum (W.Curt.:Fr.)P. Karst. (Higher Basidiomycetes. ). Int. J. Med. Mushrooms. 2012, 14, 197–203.
  • Schulz-Bohm, K.; Zweers, H.D.; Boer, W.; Garbeva, P. A Fragrant Neighborhood: volatile Mediated Bacterial Interactions in Soil. Front. Microbiol. 2015, 6, 1212.
  • Gramss, G.; Bergmann, H. Role of Plants in the Vegetative and Reproductive Growth of Saprobic Basidiomycetous Ground Fungi. Microb. Ecol. 2008, 56, 660–670.
  • Ramirez, K.S.; Lauber, C.L.; Fierer, N. Microbial Consumption and Production of Volatile Organic Compounds at the Soil-Litter Interface. Biogeochemistry 2010, 99, 97–107.
  • Ajith, P.; Lakshmidevi, N. Effect of Volatile and Non-Volatile Compounds from Trichoderma Spp. against Colletotrichum Capsici Incitant of Anthracnose on Bell Peppers. Nat. Sci. 2010, 8, 265–269.
  • Liu, W.-W.; Mu, W.; Zhu, B.-Y.; Du, Y.-C.; Liu, F. Antagonistic Activities of Volatiles from Four Strains of Bacillus Spp. and Paenibacillus Spp. Against Soil-Borne Plant Pathogens. Agr.Sci. China. 2008, 7, 1104–1114.
  • Popova, A.A.; Koksharova, O.A.; Lipasova, V.A.; Zaitseva, J.V.; Katkova-Zhukotskaya, O.A.; Eremina, S.I.; Mironov, A.S.; Chernin, L.S.; Khmel, I.A. Inhibitory Toxic, Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. Biomed. Res. Int. 2014, 2014, 1.
  • Dunkel, M.; Schmidt, U.; Struck, S.; Berger, L.; Gruening, B.; Hossbach, J.; Jaeger, I. S.; Effmert, U.; Piechulla, B.; Eriksson, R. SuperScent—A Database of Flavors and Scents. Nucleic. Acids. Res. 2009, 37, 291–294.
  • Lemfack, M.C.; Nickel, J.; Dunkel, M.; Preissner, R. Piechulla, B. mVOC: A Database of Microbial Volatiles. Nucleic. Acids. Res. 2014, 42, 744–748.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.