283
Views
7
CrossRef citations to date
0
Altmetric
Articles

Improved performance in γ-polyglutamic acid production by Bacillus subtilis LX on industrial scale by impeller retrofitting and its unstructured microbial growth kinetics model

, , , &

References

  • Shih, I. L.; Van, Y. T. The Production of Poly-(Gamma-Glutamic Acid) from Microorganisms and Its Various Applications. Bioresour. Technol. 2001, 79, 207–225.
  • Ogunleye, A.; Bhat, A.; Irorere, V. U.; Hill, D.; Williams, C.; Radecka, I.; Poly, G. Poly-γ-glutamic acid: production, properties and applications. Microbiology (Reading, Engl.) 2015, 161, 1–17.
  • Multani, A. S.; Li, C.; Ozen, M.; Yadav, M.; Yu, D. F.; Wallace, S.; Pathak, S. Paclitaxel and Water-Soluble Poly (L-Glutamic Acid)-Paclitaxel, Induce Direct Chromosomal Abnormalities and Cell Death in a Murine Metastatic Melanoma Cell Line. Anticancer Res. 1997, 17, 4269–4274.
  • Manocha, B.; Margaritis, A. Production and Characterization of Gamma-Polyglutamic Acid Nanoparticles for Controlled Anticancer Drug Release. Crit. Rev. Biotechnol. 2008, 28, 83–99.
  • Kunioka, M. Biodegradable Water Absorbent Synthesized from Bacterial Poly(amino Acid)s. Macromol. Biosci. 2004, 4, 324–329.
  • Chen, J.; Shi, F.; Zhang, B.; Zhu, F.; Cao, W.; Xu, Z.; Xu, G.; Cen, P. Effects of Cultivation Conditions on the Production of Gamma-PGA with Bacillus subtilis ZJU-7. Appl. Biochem. Biotechnol. 2010, 160, 370–377.
  • Wei, X.; Ji, Z.; Chen, S. Isolation of Halotolerant Bacillus licheniformis WX-02 and Regulatory Effects of Sodium Chloride on Yield and Molecular Sizes of Poly-Gamma-Glutamic Acid. Appl. Biochem. Biotechnol. 2010, 160, 1332–1340.
  • Goto, A.; Kunioka, M. Biosynthesis and Hydrolysis of Poly(gamma-Glutamic Acid) from Bacillus subtilis IFO3335. Biosci. Biotechnol. Biochem. 1992, 56, 1031–1035.
  • Cromwick, A. M.; Birrer, G. A.; Gross, R. A. Effects of pH and Aeration on Gamma-Poly(glutamic Acid) Formation by Bacillus licheniformis in Controlled Batch Fermentor Cultures. Biotechnol. Bioeng. 1996, 50, 222–227.
  • Richard, A.; Margaritis, A. Rheology, Oxygen Transfer, and Molecular Weight Characteristics of Poly(glutamic Acid) Fermentation by Bacillus subtilis. Biotechnol. Bioeng. 2003, 82, 299–305.
  • Ko, Y. H.; Gross, R. A. Effects of Glucose and Glycerol on Gamma-Poly(glutamic Acid) Formation by Bacillus licheniformis ATCC 9945a. Biotechnol. Bioeng. 1998, 57, 430–437.
  • Yu, W.; Chen, Z.; Ye, H.; Liu, P.; Li, Z.; Wang, Y.; Li, Q.; Yan, S.; Zhong, C. J.; He, N. Effect of Glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis. Microb. Cell Fact. 2017, 16, 22–32.
  • Zhao, C.; Zhang, Y.; Wei, X.; Hu, Z.; Zhu, F.; Xu, L.; Luo, M.; Liu, H. Production of Ultra-High Molecular Weight Poly-Gamma-Glutamic Acid with Bacillus licheniformis P-104 and Characterization of Its Flocculation Properties. Appl. Biochem. Biotechnol. 2013, 170, 562–572.
  • Birrer, G. A.; Cromwick, A. M.; Gross, R. A. Gamma-Poly(glutamic Acid) Formation by Bacillus licheniformis 9945a: Physiological and Biochemical Studies. Int. J. Biol. Macromol. 1994, 16, 265–275.
  • Bajaj, I. B.; Singhal, R. S. Enhanced Production of Poly (gamma-Glutamic Acid) from Bacillus licheniformis NCIM 2324 by Using Metabolic Precursors. Appl. Biochem. Biotechnol. 2009, 159, 133–141.
  • Richard, A.; Margaritis, A. Optimization of Cell Growth and Poly(glutamic Acid) Production in Batch Fermentation by Bacillus subtilis. Biotechnol. Lett. 2003, 25, 465–468.
  • Silva, S. B.; Cantarelli, V. V.; Ayub, M. A. Production and Optimization of Poly-Gamma-Glutamic Acid by Bacillus subtilis BL53 Isolated from the Amazonian Environment. Bioprocess Biosyst. Eng. 2014, 37, 469–479.
  • Sirisansaneeyakul, S.; Cao, M.; Kongklom, N.; Chuensangjun, C.; Shi, Z.; Chisti, Y. Microbial Production of poly-γ-glutamic acid. World J. Microbiol. Biotechnol. 2017, 33, 173–178.
  • McFarlane, C. M.; Nienow, A. W. Studies of High Solidity Ratio Hydrofoil Impellers for Aerated Bioreactors: 1. Review. Biotechnol. Prog. 1995, 11, 601–607.
  • Buckland, B. C.; Gbewonyo, K.; Dimasi, D.; Hunt, G.; Westerfield, G.; Nienow, A. W. Improved Performance in Viscous Mycelial Fermentations by Agitator Retrofitting. Biotechnol. Bioeng. 1988, 31, 737–742.
  • Divyashree, M. S.; Rastogi, N. K.; Shamala, T. R. A Simple Kinetic Model for Growth and Biosynthesis of Polyhydroxyalkanoate in Bacillus flexus. N Biotechnol. 2009, 26, 92–98.
  • Wang, X.; Xu, P.; Yuan, Y.; Liu, C.; Zhang, D.; Yang, Z.; Yang, C.; Ma, C. Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium. Appl. Environ. Microbiol. 2006, 72, 3367–3374.
  • Garcia-Ochoa, F.; Delgado, C.; Santos, V. E. Kinetic Model of Micro-Organism Growth: The Case of Xanthomonas campestris. Microbiologia 1995, 11, 471–484.
  • Schweickart, R. W.; Quinlan, A. V. Kinetics of Xanthan Production When NH3-N Limits Biomass Synthesis and Glucose Limits Polysaccharide Synthesis. J. Biomech. Eng. 1989, 111, 166–172.
  • Richard, A.; Margaritis, A. Empirical Modeling of Batch Fermentation Kinetics for Poly(glutamic Acid) Production and Other Microbial Biopolymers. Biotechnol. Bioeng. 2004, 87, 501–515.
  • Bajaj, I. B.; Singhal, R. S. Poly (glutamic Acid)-an Emerging Biopolymer of Commercial Interest. Bioresour. Technol. 2011, 102, 5551–5561.
  • Huang, B.; Qin, P.; Xu, Z.; Zhu, R.; Meng, Y. Effects of CaCl2 on Viscosity of Culture Broth, and on Activities of Enzymes around the 2-Oxoglutarate Branch, in Bacillus subtilis CGMCC 2108 Producing Poly-(Gamma-Glutamic Acid). Bioresour. Technol. 2011, 102, 3595–3598.
  • Larsen, R.; Kjaergaard, L. A Structured Model for Microbial Growth and Product Formation. European J. Appl. Microbiol. Biotechnol. 1978, 5, 177–188.
  • Dong, Y. M.; Yan, X. F.; Lu, F.; Guo, M. J.; Zhuang, Y. P. Development and Optimization of an Unstructured Kinetic Model for Sodium Gluconate Fermentation Process. CMC 2015, 48, 43–55.
  • Schill, N.; Gulik, W.; Voisard, D.; Stockar, U. Continuous Cultures Limited by a Gaseous Substrate: Development of a Simple, Unstructured Mathematical Model and Experimental Verification with Methanobacterium Thermoautotrophicum. Biotechnol. Bioeng. 2000, 51, 645–658.
  • Esener, A. A.; Roels, J. A.; Kossen, N. W. Theory and Applications of Unstructured Growth Models: Kinetic and Energetic Aspects. Biotechnol. Bioeng. 1983, 25, 2803–2841.
  • Kongklon, N.; Luo, H. Z.; Shi, Z. P.; Pechyen, C.; Chisti, Y.; Sirisansaneeyakul, S. Production of Poly-γ-Glutamic Acid by Glutamic Acid-Independent Bacillus licheniformis TISTR 1010 Using Different Feeding Strategies. Biochem. Eng. J. 2015, 100, 67–75.
  • Kanno, A.; Takamatsu, H. Determination of Polyglutamic Acid in "Natto" Using Cetyltrimethylammonium Bromide. J. Jpn. Soc. Food Sci. Technol. 1995, 42, 878–886.
  • Zhang, Q. Q.; Jin, X. Q.; Chen, J. X.; Zhao, A. B.; Li, H. J. Study on Efficient Determination Method of Poly-γ-Glutamic Acid in Fermentation Broth. Sci. Technol. Food Ind. 2012, 33, 294–300.
  • Pinches, A.; Pallent, L. J. Rate and Yield Relationships in the Production of Xanthan Gum by Batch Fermentations Using Complex and Chemically Defined Growth Media. Biotechnol. Bioeng. 1986, 28, 1484–1496.
  • Ogawa, Y.; Yamaguchi, F.; Yuasa, K.; Tahara, Y. Efficient Production of gamma-Polyglutamic Acid by Bacillus subtilis (natto) in Jar Fermenters. Biosci. Biotechnol. Biochem. 1997, 61, 1684–1687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.