206
Views
6
CrossRef citations to date
0
Altmetric
Articles

Steroidal fraction of Carissa carandas L. inhibits microbial hyaluronidase activity by mixed inhibition mechanism

, , , &

References

  • Scott, J.E.; Heatley, F. Biological Properties of Hyaluronan in Aqueous Solution are Controlled and Sequestered by Reversible Tertiary Structures, Defined by NMR Spectroscopy. Biomacromolecules. 2002, 3, 547–553.
  • Kreil, G. Hyaluronidases-A Group of Neglected Enzymes. Protein Sci. 1995, 4, 1666–1669.
  • Hynes, W.L.; Walton, S.L. Hyaluronidases of Gram-Positive Bacteria. FEMS Microbiol. Lett. 2000, 183, 201–207.
  • Matsushita, O.; Okabe, A. Clostridial Hydrolytic Enzymes Degrading Extracellular Components. Toxicon. 2001, 39, 1769–1780.
  • Makris, G.; Wright, J.D.; Ingham, E.; Holland, K.T. The Hyaluronate Lyase of Staphylococcus aureus - A Virulence Factor? Microbiology. 2004, 150, 2005–2013.
  • Sutherland, I.W. Polysaccharide Lyases. FEMS Microbiol. Rev. 1995, 16, 323–347.
  • Li, S.; Kelly, S. J.; Lamani, E.; Ferraroni, M.; Jedrzejas, M. J. Structural Basis of Hyaluronan Degradation by Streptococcus pneumoniae Hyaluronate Lyase. Embo. J. 2000, 19, 1228–1240.
  • Spellerberg, B. Pathogenesis of Neonatal Streptococcus agalactiae Infections. Microb. Infect. 2000, 2, 1733–1742.
  • Starr, C.R.; Engleberg, N.C. Role of Hyaluronidase in Subcutaneous Spread and Growth of Group A Streptococcus. Infect. Immun. 2006, 74, 40–48.
  • Wang, Z.; Guo, C.; Xu, Y.; Liu, G.; Lu, C.; Liu, Y. Two Novel Functions of Hyaluronidase from Streptococcus agalactiae are Enhanced Intracellular Survival and Inhibition of Pro-Inflammatory Cytokine Expression. Infect. Immun. 2014, 82, 2615–2625.
  • Laurent, T.C.; Fraser, J.R.E. Hyaluronan. Faseb. J. 1992, 6, 2397–2404.
  • Gunther, E.; Ozegowski, J.H.; Kohler, W. Occurrence of Extracellular Hyaluronic Acid and hyaluronatlyase in streptococci of groups A, B, C, and G. Zentralbl. Bakteriol. 1996, 285, 64–73.
  • Berry, A.M.; Lock, R.A.; Thomas, S.M.; Rajan, D.P.; Hansman, D.; Paton, J.C. Cloning and Nucleotide-Sequence of the Streptococcus pneumoniae Hyaluronidase Gene and Purification of the Enzyme from Recombinant Escherichia coli. Infect. Immun. 1994, 62, 1101–1108.
  • Canard, B.; Garnier, T.; Saint-Joanis, B.; Cole, S. Molecular Genetic Analysis of the nagH Gene Encoding a Hyaluronidase of Clostridium perfringens. Molec. Gen. Genet. 1994, 243, 215–224.
  • Girish, K.S.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B.S. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Cmc. 2009, 16, 2261–2288.
  • Shimizu, M.T.; Jorge, A.O.C.; Unterkircher, C.S.; Fantinato, V.; Paula, C.R. Hyaluronidase and Chondroitin Sulphatase Production by Different Species of Candida. J. Med. Vet. Mycol. 1995, 33, 27–31.
  • Bakke, M.; Kamei, J.I.; Obata, A. Identification, Characterization, and Molecular Cloning of a Novel Hyaluronidase, a Member of Glycosyl Hydrolase Family 16, from Penicillium Spp. FEBS Lett. 2011, 585, 115–120.
  • Smirnou, D.; Krčmář, M.; Kulhánek, J.; Hermannová, M.; Bobková, L.; Franke, L.; Pepeliaev, S.; Velebný, V. Characterization of Hyaluronan-Degrading Enzymes from Yeasts. Appl. Biochem. Biotechnol. 2015, 177, 700–712.
  • Hovingh, P.; Linker, A. Hyaluronidase Activity in Leeches (Hirudinea). Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 1999, 124, 319–326.
  • Sutti, R.; Tamascia, M.L.; Hyslop, S.; Rocha-e-Silva, T.A.A. Purification and Characterization of a Hyaluronidase from Venom of the Spider Vitalius Dubius (Araneae, Theraphosidae). J. Venom. Anim. Toxins Incl. Trop. Dis. 2014, 20, 2–11.
  • Nagaraju, S.; Devaraja, S.; Kemparaju, K. Purification and Properties of Hyaluronidase from Hippasa Partita (funnel Web Spider) Venom Gland Extract. Toxicon. 2007, 50, 383–393.
  • Jacomini, D.L.J.; Pereira, F.D.C.; dos Santos Pinto, J.R.A.; dos Santos, L.D.; da Silva Neto, A.J.; Giratto, D.T.; Palma, M.S.; de Lima Zollner, R.; Braga, M.R.B. Hyaluronidase from the Venom of the Social Wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, Structural Modeling, Purification, and Immunological Analysis. Toxicon 2013, 64, 70–80.
  • Reitinger, S.; Müllegger , J. ; Lepperdinger , G. Xenopus Kidney Hyaluronidase-1 (XKH1), A Novel Type of Membrane-Bound Hyaluronidase Solely Degrades Hyaluronan at Neutral pH. FEBS Lett. 2001, 505, 213–216.
  • Morey, S.S.; Kiran, K.M.; Gadag, J.R. Purification and Properties of Hyaluronidase from Palamneus Gravimanus (Indian Black Scorpion) Venom. Toxicon. 2006, 47, 188–195.
  • Feng, L.; Gao, R.; Gopalakrishnakone, P. Isolation and Characterization of a Hyaluronidase from the Venom of Chinese Red Scorpion Buthus Martensi. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 148, 250–257.
  • Fitzgerald, T.J.; Gannon, E.M. Further Evidence for Hyaluronidase Activity of Treponema pallidum. Can. J. Microbiol. 1983, 29, 1507–1513.
  • Calvinho, L.F.; Almeida, R.A.; Oliver, S.P. Potential Virulence Factors of Streptococcus dysgalactiae Associated with Bovine Mastitis. Vet. Microbiol. 1998, 61, 93–110.
  • Schaufuss, P.; Sting, R.; Schaeg, W.; Blobel, H. Isolation and Characterization of Hyaluronidase from Streptococcus uberis. Zentralbl. Bakteriol. 1989, 271, 46–53.
  • Matthews, K.R.; Rejman, J.J.; Turner, J.D.; Oliver, S.P. Proliferation of a Bovine Mammary Epithelial Cell Line in the Presence of Bacterial Virulence Factors. J. Dairy Sci. 1994, 77, 2959–2964.
  • Vornhagen, J.; Quach, P.; Boldenow, E.; Merillat, S.; Whidbey, C.; Ngo, L.Y.; Adams Waldorf, K.M.; Rajagopal, L. Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth. mBio. 2016, 7, e00781–e00716. Doi:10.1128/mBio.00781-16.
  • Surve, M.V.; Anil, A.; Kamath, K.G.; Bhutda, S.; Sthanam, L.K.; Pradhan, A.; Srivastava, R.; Basu, B.; Dutta, S.; Sen, S.; et al. Membrane Vesicles of Group B Streptococcus Disrupt Feto-Maternal Barrier Leading to Preterm Birth. PLoS Pathog. 2016, 12, e1005816. Doi: 10.1371/journal.ppat.1005816.
  • Aziz, A.M. The Role of Healthcare Strategies in Controlling Antibiotic Resistance. Brit. J. Nut.r 2013, 22, 1066–1074.
  • Ibberson, C.B.; Jones, C.L.; Singh, S.; Wise, M.C.; Hart, M.E.; Zurawski, D.V.; Horswill, A.R. Staphylococcus aureus Hyaluronidase is a CodY-Regulated Virulence Factor. Infect. Immun. 2014, 82, 4253–4264.
  • Li, S.; Jedrzejas, M.J. Hyaluronan Binding and Degradation by Streptococcus agalactiae Hyaluronate Lyase. J. Biol. Chem. 2001, 276, 41407–41416.
  • Spickenreither, M.; Braun, S.; Bernhardt, G.; Dove, S.; Buschauer, A. Novel 6-O-Acylated Vitamin C Derivatives as Hyaluronidase Inhibitors with Selectivity for Bacterial Lyases. Bioorg. Med. Chem. Lett. 2006, 16, 5313–5316.
  • Girish, K.S.; Kemparaju, K. Inhibition of Naja Naja Venom Hyaluronidase by Plant Derived Bioactive Components and Polysaccharides. Biochem. (Moscow) 2005, 70, 948–952.
  • Garg, A.; Anderson, R.A.; Zaneveld, L.J.D.; Garg, S. Biological Activity Assessment of a Novel Contraceptive Antimicrobial Agent. J. Androl. 2005, 26, 414–421.
  • Kim, M.Y.; Kim, Y.C.; Chung, S.K. Identification and In Vitro Biological Activities of Flavonols in Garlic Leaf and Shoot: Inhibition of Soybean Lipoxygenase and Hyaluronidase Activities and Scavenging of Free Radicals. J. Sci. Food Agric. 2005, 85, 633–640.
  • Hertel, W.; Peschel, G.; Ozegowski, J.-H.; Müller, P.-J. Inhibitory Effects of Triterpenes and Flavonoids on the Enzymatic Activity of Hyaluronic Acid-Splitting Enzymes. Arch. Pharm. (Weinheim) 2006, 339, 313–318.
  • Facino, R.M.; Carini, M.; Stefani, R.; Aldini, G.; Saibene, L. Anti‐Elastase and anti‐Hyaluronidase Activities of Saponins and Sapogenins from Hedera Helix, Aesculus Hippocastanum, and Ruscus Aculeatus: Factors Contributing to Their Efficacy in the Treatment of Venous Insufficiency. Archiv. der Pharmazie. 1995, 328, 720–724.
  • Tatemoto, H.; Tokeshi, I.; Nakamura, S.; Muto, N.; Nakada, T. Inhibition of Boar Sperm Hyaluronidase Activity by Tannic Acid Reduces Polyspermy During in Vitro Fertilization of Porcine Oocytes. Zygote 2006, 14, 275–285.
  • Hegde, K.; Thakker, S.P.; Joshi, A.B.; Shastry, C.S.; Chandrashekhar, K.S. Anticonvulsant Activity of Carissa carandas Linn. root Extract in Experimental Mice. Trop. J. Pharm. Res. 2009, 8, 117–125.
  • Itankar, P.R.; Lokhande, S.J.; Verma, P.R.; Arora, S.K.; Sahu, R.A.; Patil, A.T. Antidiabetic Potential of Unripe Carissa carandas Linn. fruit Extract. J. Ethnopharmacol. 2011, 135, 430–433.
  • Bhaskar, V. H ; Balakrishnan , N. Analgesic, anti-Inflammatory and Antipyretic Activities of Pergularia daemia and Carissa carandas. J. Pharm. Sci. 2009, 17, 168–174.
  • Salar, R.K.; Dhall, A. Antimicrobial and Free Radical Scavenging Activity of Extracts of Some Indian Medicinal Plants. J. Med. Plants Res. 2010, 4, 2313–2320.
  • Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, Isolation and Characterization of Bioactive Compounds from Plants Extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 256–262.
  • Patil, S.; Chaudhari, B. A Simple, Rapid and Sensitive Plate Assay for Detection of Microbial Hyaluronidase Activity. J. Basic Microbiol. 2017, 57, 358–361.
  • Grabowska, K.; Podolak, I.; Galanty, A.; Załuski, D.; Makowska-Wąs, J.; Sobolewska, D.; Janeczko, Z.; Żmudzki, P. In Vitro Anti-Denaturation and Anti-Hyaluronidase Activities of Extracts and Galactolipids from Leaves of Impatiens parviflora DC. Nat. product Res. 2016, 30, 1219–1223.
  • Wagner, H.; Bladt, S. Plant Drug Analysis. A Thin Layer Chromatography Atlas. Springer-verlag, Berlin, Heidelberg; 1996.
  • Cakir, A.; Mavi, A.; Yıldırım , A .; Duru , M. E .; Harmandar , M .; Kazaz , C. Isolation and Characterization of Antioxidant Phenolic Compounds from the Aerial Parts of Hypericum hyssopifolium L. by Activity-Guided Fractionation. J. Ethnopharmacol. 2003, 87, 73–83.
  • Di Ferrante, N. Turbidimetric Measurement of Acid mucopolysaccharides and hyaluronidase activity . J. Biol. Chem. 1956, 220, 303–306.
  • Kelly, S.J.; Taylor, K.B.; Li, S.; Jedrzejas, M.J. Kinetic Properties of Streptococcus pneumoniae Hyaluronate Lyase. Glycobio. 2001, 11, 297–304.
  • Lineweaver, H.; Burk, D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934, 56, 658–666.
  • Dixon, A. The Determination of Enzyme Inhibitor Constants. Biochem. J. 1953, 55, 170
  • Butterworth, P.J. The Use of Dixon Plots to Study Enzyme inhibition. Biochim. Biophys. Acta. 1972, 289, 251–253.
  • Patil, S.G.; Patil, M.P.; Maheshwari, V.L.; Patil, R.H. In Vitro Lipase Inhibitory Effect and Kinetic Properties of di-Terpenoid Fraction from Calotropis procera (Aiton). Biocat. Agricul. Biotech. 2015, 4, 579–585.
  • Hayakawa, K.; Guo, L.; Terentyeva, E.A.; Li, X.K.; Kimura, H.; Hirano, M.; Yoshikawa, K.; Nagamine, T.; Katsumata, N.; Ogata, T.; Tanaka, T. Determination of Specific Activities and Kinetic Constants of Biotinidase and Lipoamidase in LEW Rat and Lactobacillus casei (Shirota). J. Chromatography-B 2006, 844, 240–250.
  • Lehninger, A.; Nelson, D.L.; Cox, M.M. Lehninger’s Principles of Biochemistry. W. H Freeman and Company, New York; 2005.
  • Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry. W. H Freeman and Company, New York; 2007.
  • Storey, K.B. Functional Metabolism: Regulation and Adaptation. John Wiley and Sons, Hoboken, New Jersey; 2005.
  • Mahler, H.R.; Cordes, E.H. Biological Chemistry. Harper and Row, New York; 2001.
  • Panneer Selvam, R.; Srinivasan, V.; Gunasekaran, S.; Palani, S. Phytochemical and GC-MS Analysis of Ethanolic Extract of Asparagus rasemosus. Int. J. Innov. Pharma. Sci. Res. 2014, 2, 2070–2076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.