503
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli

ORCID Icon, , , , &

References

  • Flajnik, M.F. Comparative Analyses of Immunoglobulin Genes: Surprises and Portents. Nat. Rev. Immunol. 2002, 2, 688–698. DOI: 10.1038/nri889.
  • Leow, C.H.; Fischer, K.; Leow, C.Y.; Cheng, Q.; Chuah, C.; McCarthy, J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017, 7, 52.
  • Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hamers, C.; Songa, E.B.; Bendahman, N.; Hamers, R. Naturally Occurring Antibodies Devoid of Light Chains. Nature 1993, 363, 446–448. DOI: 10.1038/363446a0.
  • Harmsen, M.M.; De Haard, H.J. Properties, Production, and Applications of Camelid Single-domain Antibody Fragments. Appl. Microbiol. Biotechnol. 2007, 77, 13–22. DOI: 10.1007/s00253-007-1142-2.
  • Diaz, M.; Stanfield, R.L.; Greenberg, A.S.; Flajnik, M.F. Structural Analysis, Selection, and Ontogeny of the Shark New Antigen Receptor (IgNAR): Identification of a New Locus Preferentially Expressed in Early Development. Immunogenetics 2002, 54, 501–512. DOI: 10.1007/s00251-002-0479-z.
  • Simmons, D.P.; Abregu, F.A.; Krishnan, U.V.; Proll, D.F.; Streltsov, V.A.; Doughty, L.; Hattarki, M.K.; Nuttall, S.D. Dimerisation Strategies for Shark IgNAR Single Domain Antibody Fragments. J. Immuno. Meth. 2006, 315, 171–184. DOI: 10.1016/j.jim.2006.07.019.
  • Greenberg, A.S.; Avila, D.; Hughes, M.; Hughes, A.; McKinney, E.C.; Flajnik, M.F. A New Antigen Receptor Gene Family That Undergoes Rearrangement and Extensive Somatic Diversification in Sharks. Nature 1995, 374, 168–173. DOI: 10.1038/374168a0.
  • Kovaleva, M.; Ferguson, L.; Steven, J.; Porter, A.; Barelle, C. Shark Variable New Antigen Receptor Biologics - A Novel Technology Platform for Therapeutic Drug Development. Exp. Op. Biol. Ther. 2014, 14, 1527–1539. DOI: 10.1517/14712598.2014.937701.
  • Malecek, K.; Lee, V.; Feng, W.; Huang, J.L.; Flajnik, M.F.; Ohta, Y.; Hsu, E. Immunoglobulin Heavy Chain Exclusion in the Shark. PLoS Biol. 2008, 6, e157
  • Nuttall, S.D.; Krishnan, U.V.; Doughty, L.; Nathanielsz, A.; Ally, N.; Pike, R.N.; Hudson, P.J.; Kortt, A.A.; Irving, R.A. A Naturally Occurring NAR Variable Domain Binds the Kgp Protease from Porphyromonas gingivalis. FEBS Lett. 2002, 516, 80–86. DOI: 10.1016/S0014-5793(02)02506-1.
  • Wesolowski, J.; Alzogaray, V.; Reyelt, J.; Unger, M.; Juarez, K.; Urrutia, M.; Cauerhff, A.; Danquah, W.; Rissiek, B.; Scheuplein, F.; et al. Single Domain Antibodies: promising Experimental and Therapeutic Tools in Infection and Immunity. Med. Microbiol. Immunol. 2009, 198, 157–174. DOI: 10.1007/s00430-009-0116-7.
  • Dumoulin, M.; Conrath, K.; Van Meirhaeghe, A.; Meersman, F.; Heremans, K.; Frenken, L. G.; Muyldermans, S.; Wyns, L.; Matagne, A. Single-Domain Antibody Fragments with High Conformational Stability. Prot. Sci.: A Publication of the Prot. Soc. 2009, 11, 500–515. DOI: 10.1110/ps.34602.
  • Roux, K.H.; Greenberg, A.S.; Greene, L.; Strelets, L.; Avila, D.; McKinney, E.C.; Flajnik, M.F. Structural Analysis of the Nurse Shark (new) antigen Receptor (NAR): Molecular Convergence of NAR and Unusual Mammalian Immunoglobulins. Proceedings of the National Academy of Sciences of the United States of America 1998, 95, 11804–11809. DOI: 10.1073/pnas.95.20.11804.
  • Almagro, J.C.; Raghunathan, G.; Beil, E.; Janecki, D.J.; Chen, Q.; Dinh, T.; LaCombe, A.; Connor, J.; Ware, M.; Kim, P.H.; et al. Characterization of a High-affinity Human Antibody with a Disulfide Bridge in the Third Complementarity-determining Region of the Heavy Chain. J. Mol. Recognit. 2012, 25, 125–135. DOI: 10.1002/jmr.1168.
  • Griffiths, K.; Dolezal, O.; Parisi, K.; Angerosa, J.; Dogovski, C.; Barraclough, M.; Sanalla, A.; Casey, J.; González, I.; Perugini, M.; et al. Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications. Antibodies 2013, 2, 66–81. DOI: 10.3390/antib2010066.
  • Dooley, H.; Flajnik, M.F.; Porter, A.J. Selection and Characterization of Naturally Occurring Single-domain (IgNAR) Antibody Fragments from Immunized Sharks by Phage Display. Mol. Immunol. 2003, 40, 25–33. DOI: 10.1016/S0161-5890(03)00084-1.
  • Goulding, C.W.; Perry, L.J. Protein Production in Escherichia coli for Structural Studies by X-ray crystallography. J. Struct. Biol. 2003, 142, 133–143.
  • Knaust, R.K.; Nordlund, P. Screening for Soluble Expression of Recombinant Proteins in a 96-well Format. Anal. Biochem. 2001, 297, 79–85. DOI: 10.1006/abio.2001.5331.
  • Lesley, S.A. High-Throughput Proteomics: Protein Expression and Purification in the Postgenomic World. Prot. Exp. Purific. 2001, 22, 159–164. DOI: 10.1006/prep.2001.1465.
  • de Marco, A. Strategies for Successful Recombinant Expression of Disulfide Bond-dependent Proteins in Escherichia coli. Microb. Cell Fact. 2009, 8, 26
  • Waldo, G.S.; Standish, B.M.; Berendzen, J.; Terwilliger, T.C. Rapid Protein-folding Assay Using Green Fluorescent Protein. Nat. Biotechnol. 1999, 17, 691–695. DOI: 10.1038/10904.
  • Kamionka, M. Engineering of Therapeutic Proteins Production in Escherichia coli. Curr. Pharm. Biotechnol. 2011, 12, 268–274. DOI: 10.2174/138920111794295693.
  • Miot, M.; Betton, J.M. Protein Quality Control in the Bacterial periplasm. Microb. Cell Fact. 2004, 3, 4
  • Kadokura, H.; Katzen, F.; Beckwith, J. Protein Disulfide Bond Formation in prokaryotes. Annu. Rev. Biochem. 2003, 72, 111–135.
  • Messens, J.; Collet, J.F. Pathways of Disulfide Bond Formation in Escherichia coli. Int. J. Biochem. Cell Biol. 2006, 38, 1050–1062.
  • Berndt, C.; Lillig, C.H.; Holmgren, A. Thioredoxins and Glutaredoxins as Facilitators of Protein Folding. Biochim. Biophys. Acta. 2008, 1783, 641–650.
  • Thie, H.; Schirrmann, T.; Paschke, M.; Dubel, S.; Hust, M. SRP and Sec Pathway Leader Peptides for Antibody Phage Display and Antibody Fragment Production in E. coli. New Biotechnol. 2008, 25, 49–54. DOI: 10.1016/j.nbt.2008.01.001.
  • Francetic, O.; Buddelmeijer, N.; Lewenza, S.; Kumamoto, C.A.; Pugsley, A.P. Signal Recognition Particle-Dependent Inner Membrane Targeting of the PulG Pseudopilin Component of a Type II Secretion System. J. Bacteriol 2007, 189, 1783–1793. DOI: 10.1128/JB.01230-06.
  • Bzymek, K.P.; D'Souza, V.M.; Chen, G.; Campbell, H.; Mitchell, A.; Holz, R.C. Function of the Signal Peptide and N- and C-Terminal Propeptides in the Leucine Aminopeptidase from Aeromonas Proteolytica. Prot. Exp. Purific. 2004, 37, 294–305. DOI: 10.1016/j.pep.2004.05.004.
  • Cristobal, S.; de Gier, J.W.; Nielsen, H.; von Heijne, G. Competition between Sec- and TAT-Dependent Protein Translocation in Escherichia coli. The EMBO Journal 1999, 18, 2982–2990. DOI: 10.1093/emboj/18.11.2982.
  • Kuo, D.W.; Chan, H.K.; Wilson, C.J.; Griffin, P.R.; Williams, H.; Knight, W.B. Escherichia coli Leader Peptidase: Production of an Active Form Lacking a Requirement for Detergent and Development of Peptide Substrates. Arch. Biochem. Biophys. 1993, 303, 274–280. DOI: 10.1006/abbi.1993.1283.
  • Kim, J.; Lee, Y.; Kim, C.; Park, C. Involvement of SecB, a Chaperone, in the Export of Ribose-binding Protein. J. Bacteriol. 1992, 174, 5219–5227.
  • Dalbey, R.E. Leader Peptidase. Mol. Microbiol. 1991, 5, 2855–2860.
  • Ruddock, L.W.; Hirst, T.R.; Freedman, R.B. pH-dependence of the Dithiol-oxidizing Activity of DsbA (a Periplasmic Protein Thiol:disulphide Oxidoreductase) and Protein Disulphide-isomerase: Studies with a Novel Simple Peptide Substrate. Biochem. J. 1996, 315, 1001–1005. DOI: 10.1042/bj3151001.
  • Whitley, P.; von Heijne, G. The DsbA-DsbB System Affects the Formation of Disulfide Bonds in Periplasmic but Not in Intramembraneous Protein Domains. FEBS Lett. 1993, 332, 49–51.
  • Sandee, D.; Tungpradabkul, S.; Kurokawa, Y.; Fukui, K.; Takagi, M. Combination of Dsb Coexpression and an Addition of Sorbitol Markedly Enhanced Soluble Expression of Single-chain Fv in Escherichia coli. Biotechnol. Bioeng. 2005, 91, 418–424. DOI: 10.1002/bit.20524.
  • Kondo, A.; Kohda, J.; Endo, Y.; Shiromizu, T.; Kurokawa, Y.; Nishihara, K.; Yanagi, H.; Yura, T.; Fukuda, H. Improvement of Productivity of Active Horseradish Peroxidase in Escherichia coli by Coexpression of Dsb Proteins. J. Biosci. Bioeng. 2000, 90, 600–606. DOI: 10.1016/S1389-1723(00)90003-3.
  • Schlapschy, M.; Grimm, S.; Skerra, A. A System for Concomitant Overexpression of Four Periplasmic Folding Catalysts to Improve Secretory Protein Production in Escherichia coli. Prot. Eng., Des. Sel: PEDS 2006, 19, 385–390. DOI: 10.1093/protein/gzl018.
  • Kurokawa, Y.; Yanagi, H.; Yura, T. Overproduction of Bacterial Protein Disulfide Isomerase (DsbC) and Its Modulator (DsbD) markedly Enhances Periplasmic Production of Human Nerve Growth Factor in Escherichia coli. J. Biol. Chem. 2001, 276, 14393–14399. DOI: 10.1074/jbc.M100132200.
  • Kurokawa, Y.; Yanagi, H.; Yura, T. Overexpression of Protein Disulfide Isomerase DsbC Stabilizes Multiple-disulfide-bonded Recombinant Protein Produced and Transported to the Periplasm in Escherichia coli. Appl. Env. Microbiol. 2000, 66, 3960–3965. DOI: 10.1128/AEM.66.9.3960-3965.2000.
  • Shao, C.Y.; Secombes, C.J.; Porter, A.J. Rapid Isolation of IgNAR Variable Single-domain Antibody Fragments from a Shark Synthetic Library. Mol. Immunol. 2007, 44, 656–665. DOI: 10.1016/j.molimm.2006.01.010.
  • Liu, J.L.; Anderson, G.P.; Goldman, E.R. Isolation of anti-toxin Single Domain Antibodies from a Semi-synthetic Spiny Dogfish Shark Display Library. BMC Biotechnol. 2007, 7, 78. DOI: 10.1186/1472-6750-7-78.
  • Liu, J.L.; Anderson, G.P.; Delehanty, J.B.; Baumann, R.; Hayhurst, A.; Goldman, E.R. Selection of Cholera Toxin Specific IgNAR Single-domain Antibodies from a Naive Shark Library. Mol. Immunol. 2007, 44, 1775–1783. DOI: 10.1016/j.molimm.2006.07.299.
  • Goodchild, S.A.; Dooley, H.; Schoepp, R.J.; Flajnik, M.; Lonsdale, S.G. Isolation and Characterisation of Ebolavirus-specific Recombinant Antibody Fragments from Murine and Shark Immune Libraries. Mol. Immunol. 2011, 48, 2027–2037. DOI: 10.1016/j.molimm.2011.06.437.
  • Ohtani, M.; Hikima, J.; Jung, T.S.; Kondo, H.; Hirono, I.; Takeyama, H.; Aoki, T. Variable Domain Antibodies Specific for Viral Hemorrhagic Septicemia Virus (VHSV) selected from a Randomized IgNAR Phage Display Library. Fish & Shellfish Immunol. 2013, 34, 724–728. DOI: 10.1016/j.fsi.2012.11.041.
  • Nuttall, S.D.; Krishnan, U.V.; Hattarki, M.; De Gori, R.; Irving, R.A.; Hudson, P.J. Isolation of the New Antigen Receptor from Wobbegong Sharks, and Use as a Scaffold for the Display of Protein Loop Libraries. Mol. Immunol. 2001, 38, 313–326. DOI: 10.1016/S0161-5890(01)00057-8.
  • Nuttall, S.D.; Humberstone, K.S.; Krishnan, U.V.; Carmichael, J.A.; Doughty, L.; Hattarki, M.; Coley, A.M.; Casey, J.L.; Anders, R.F.; Foley, M.; et al. Selection and Affinity Maturation of IgNAR Variable Domains Targeting Plasmodium falciparum AMA1. Proteins 2004, 55, 187–197. DOI: 10.1002/prot.20005.
  • Howard, R.J.; Uni, S.; Aikawa, M.; Aley, S.B.; Leech, J.H.; Lew, A.M.; Wellems, T.E.; Rener, J.; Taylor, D.W. Secretion of a Malarial Histidine-rich Protein (Pf HRP II) from Plasmodium falciparum-infected Erythrocytes. The J. Cell Biol. 1986, 103, 1269–1277. DOI: 10.1083/jcb.103.4.1269.
  • Wellems, T.E.; Howard, R.J. Homologous Genes Encode Two Distinct Histidine-Rich Proteins in a Cloned Isolate of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 1986, 83, 6065–6069. DOI: 10.1073/pnas.83.16.6065.
  • Leow, C.H.; Jones, M.; Cheng, Q.; Mahler, S.; McCarthy, J. Production and Characterization of Specific Monoclonal Antibodies Binding the Plasmodium falciparum Diagnostic Biomarker, histidine-rich Protein 2. Malar. J. 2014, 13, 277. DOI: 10.1186/1475-2875-13-277.
  • Leow, C.H.; Fischer, K.; Leow, C.Y.; Braet, K.; Cheng, Q.; McCarthy, J. Isolation and Characterization of Malaria PfHRP2 Specific VNAR Antibody Fragments from Immunized Shark Phage Display Library. Malar. J. 2018, 17, 383.
  • Tahar, R.; Sayang, C.; Ngane Foumane, V.; Soula, G.; Moyou-Somo, R.; Delmont, J.; Basco, L.K. Field Evaluation of Rapid Diagnostic Tests for Malaria in Yaounde, Cameroon. Acta Tropica 2013, 125, 214–219. DOI: 10.1016/j.actatropica.2012.10.002.
  • Kattenberg, J.H.; Tahita, C.M.; Versteeg, I.A.; Tinto, H.; Traore-Coulibaly, M.; Schallig, H.D.; Mens, P.F. Antigen Persistence of Rapid Diagnostic Tests in Pregnant Women in Nanoro, Burkina Faso, and the Implications for the Diagnosis of Malaria in Pregnancy. Trop. Med. Int. Health: TM & IH. 2012, 17, 550–557. DOI: 10.1111/j.1365-3156.2012.02975.x.
  • Tjitra, E.; Suprianto, S.; McBroom, J.; Currie, B. J.; Anstey, N.M. Persistent ICT Malaria P.f/P.v Panmalarial and HRP2 Antigen Reactivity after Treatment of Plasmodium falciparum Malaria Is Associated with Gametocytemia and Results in False-positive Diagnoses of Plasmodium vivax in Convalescence. J. Clin. Microbiol. 2001, 39, 1025–1031. DOI: 10.1128/JCM.39.3.1025-1031.2001.
  • Kruger, N.J. The Bradford Method for Protein Quantitation. Methods Mol. Biol. 1994, 32, 9–15.
  • Lowe, D.; Dudgeon, K.; Rouet, R.; Schofield, P.; Jermutus, L. Aggregation, Stability, and Formulation of Human Antibody Therapeutics. Adv. Prot. Chem. Struct. Biol. 2011, 84, 41–61.
  • Demarest, S.J.; Glaser, S.M. Antibody Therapeutics, Antibody Engineering, and the Merits of Protein Stability. Curr. Opin. Drug. Discov. Devel. 2008, 11, 675–687.
  • Tang, Z.; Feng, M.; Gao, W.; Phung, Y.; Chen, W.; Chaudhary, A.; Croix, B.S.; Qian, M.; Dimitrov, D.S.; Ho, M. A Human Single-Domain Antibody Elicits Potent Antitumor Activity by Targeting an Epitope in Mesothelin Close to the Cancer Cell Surface. Mol. Cancer Therap. 2013, 12, 416–426. DOI: 10.1158/1535-7163.MCT-12-0731.
  • Tanha, J.; Xu, P.; Chen, Z.; Ni, F.; Kaplan, H.; Narang, S.A.; MacKenzie, C.R. Optimal Design Features of Camelized Human Single-domain Antibody Libraries. J. Biol. Chem. 2001, 276, 24774–24780. DOI: 10.1074/jbc.M100770200.
  • Arbabi Ghahroudi, M.; Desmyter, A.; Wyns, L.; Hamers, R.; Muyldermans, S. Selection and Identification of Single Domain Antibody Fragments from Camel Heavy-chain Antibodies. FEBS Lett. 1997, 414, 521–526.
  • Stanfield, R.L.; Dooley, H.; Flajnik, M.F.; Wilson, I.A. Crystal Structure of a Shark Single-domain Antibody V Region in Complex with Lysozyme. Science 2004, 305, 1770–1773. DOI: 10.1126/science.1101148.
  • Streltsov, V.A.; Varghese, J.N.; Carmichael, J.A.; Irving, R.A.; Hudson, P.J.; Nuttall, S.D. Structural Evidence for Evolution of Shark Ig New Antigen Receptor Variable Domain Antibodies from a Cell-Surface Receptor. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 12444–12449. DOI: 10.1073/pnas.0403509101.
  • Cornelis, P. Expressing Genes in Different Escherichia coli Compartments. Curr. Op. Biotechnol. 2000, 11, 450–454. DOI: 10.1016/S0958-1669(00)00131-2.
  • Shokri, A.; Sanden, A.M.; Larsson, G. Cell and Process Design for Targeting of Recombinant Protein into the Culture Medium of Escherichia coli. Appl. Microbiol. Biotechnol. 2003, 60, 654–664. DOI: 10.1007/s00253-002-1156-8.
  • Tsumoto, K.; Umetsu, M.; Yamada, H.; Ito, T.; Misawa, S.; Kumagai, I. Immobilized Oxidoreductase as an Additive for Refolding Inclusion Bodies: Application to Antibody Fragments. Prot. Eng. 2003, 16, 535–541. DOI: 10.1093/protein/gzg064.
  • Knappik, A.; Krebber, C.; Pluckthun, A. The Effect of Folding Catalysts on the in Vivo Folding Process of Different Antibody Fragments Expressed in Escherichia coli. Nat. Biotechnol. 1993, 11, 77–83. DOI: 10.1038/nbt0193-77.
  • Veiga, E.; de Lorenzo, V.; Fernandez, L.A. Structural Tolerance of Bacterial Autotransporters for Folded Passenger Protein Domains. Mol. Microbiol. 2004, 52, 1069–1080. DOI: 10.1111/j.1365-2958.2004.04014.x.
  • Soares, C.R.; Gomide, F.I.; Ueda, E.K.; Bartolini, P. Periplasmic Expression of Human Growth Hormone via Plasmid Vectors Containing the lambdaPL Promoter: Use of HPLC for Product Quantification. Prot. Eng. 2003, 16, 1131–1138. DOI: 10.1093/protein/gzg114.
  • Barelle, C.; Porter, A. VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins. MDPI Antibodies 2015, 4, 240–258. DOI: 10.3390/antib4030240.
  • Diaz, M.; Velez, J.; Singh, M.; Cerny, J.; Flajnik, M.F. Mutational Pattern of the Nurse Shark Antigen Receptor Gene (NAR) is Similar to That of Mammalian Ig Genes and to Spontaneous Mutations in Evolution: The Translesion Synthesis Model of Somatic Hypermutation. Int. Immunol. 1999, 11, 825–833. DOI: 10.1093/intimm/11.5.825.
  • Schierle, C.F.; Berkmen, M.; Huber, D.; Kumamoto, C.; Boyd, D.; Beckwith, J. The DsbA Signal Sequence Directs Efficient, Cotranslational Export of Passenger Proteins to the Escherichia coli Periplasm via the Signal Recognition Particle Pathway. J. Bacteriol. 2003, 185, 5706–5713. DOI: 10.1128/JB.185.19.5706-5713.2003.
  • Choi, J.H.; Lee, S.Y. Secretory and Extracellular Production of Recombinant Proteins Using Escherichia coli. Appl. Microbiol. Biotechnol. 2004, 64, 625–635. DOI: 10.1007/s00253-004-1559-9.
  • Thomas, J.G.; Baneyx, F. Protein Misfolding and Inclusion Body Formation in Recombinant Escherichia coli Cells Overexpressing Heat-shock Proteins. J. Biol. Chem. 1996, 271, 11141–11147. DOI: 10.1074/jbc.271.19.11141.
  • Zhang, Z.; Song, L.P.; Fang, M.; Wang, F.; He, D.; Zhao, R.; Liu, J.; Zhou, Z.Y.; Yin, C.C.; Lin, Q.; Huang, H.L. Production of Soluble and Functional Engineered Antibodies in Escherichia coli Improved by FkpA. BioTechniques 2003, 35, 1032–1038. DOI: 10.2144/03355rr03.
  • Barth, S.; Huhn, M.; Matthey, B.; Klimka, A.; Galinski, E.A.; Engert, A. Compatible-Solute-Supported Periplasmic Expression of Functional Recombinant Proteins under Stress Conditions. App. Env. Microbiol. 2000, 66, 1572–1579. DOI: 10.1128/AEM.66.4.1572-1579.2000.
  • Newcombe, C.; Newcombe, A.R. Antibody Production: Polyclonal-Derived Biotherapeutics. J. Chromato. B, Anal. Technol. Biomed. Life Sci. 2007, 848, 2–7. DOI: 10.1016/j.jchromb.2006.07.004.
  • Leenaars, M.; Hendriksen, C.F. Critical Steps in the Production of Polyclonal and Monoclonal Antibodies: Evaluation and Recommendations. Ilar J. 2005, 46, 269–279.
  • Chartrain, M.; Chu, L. Development and Production of Commercial Therapeutic Monoclonal Antibodies in Mammalian Cell Expression Systems: an Overview of the Current Upstream Technologies. Cpb. 2008, 9, 447–467. DOI: 10.2174/138920108786786367.
  • Chadd, H.E.; Chamow, S.M. Therapeutic Antibody Expression Technology. Curr. Op. Biotechnol. 2001, 12, 188–194. DOI: 10.1016/S0958-1669(00)00198-1.
  • Kobayashi, N.; Kato, Y.; Oyama, H.; Taga, S.; Niwa, T.; Sun, P.; Ohtoyo, M.; Goto, J. Anti-Estradiol-17beta Single-chain Fv Fragments: Generation, Characterization, Gene Randomization, and Optimized Phage Display. Steroids 2008, 73, 1485–1499. DOI: 10.1016/j.steroids.2008.08.009.
  • Saerens, D.; Pellis, M.; Loris, R.; Pardon, E.; Dumoulin, M.; Matagne, A.; Wyns, L.; Muyldermans, S.; Conrath, K. Identification of a Universal VHH Framework to Graft Non-canonical Antigen-Binding Loops of Camel Single-domain Antibodies. J. Mol. Biol. 2005, 352, 597–607. DOI: 10.1016/j.jmb.2005.07.038.
  • Crouch, K.; Smith, L.E.; Williams, R.; Cao, W.; Lee, M.; Jensen, A.; Dooley, H. Humoral Immune Response of the Small-spotted Catshark, Scyliorhinus Canicula. Fish & Shellfish Immunol. 2013, 34, 1158–1169. DOI: 10.1016/j.fsi.2013.01.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.