207
Views
9
CrossRef citations to date
0
Altmetric
Articles

Application of recurrent neural network for online prediction of cell density of recombinant Pichia pastoris producing HBsAg

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Overton, T.W.; Overton, T.W. Recombinant Protein Production in Bacterial Hosts. Drug Discov. Today. 2014, 19, 590–601.
  • Assenberg, R.; Wan, P.T.; Geisse, S.; Mayr, L.M. Advances in Recombinant Protein Expression for Use in Pharmaceutical Research. Curr. Opin. Struct. Biol. 2013, 23, 393–402. DOI: 10.1016/j.sbi.2013.03.008.
  • Macauley-Patrick, S.; Fazenda, M.L.; McNeil, B.; Harvey, L.M. Heterologous Protein Production Using the Pichia pastoris Expression System. Yeast. 2005, 22, 249–270. DOI: 10.1002/yea.1208.
  • Andersen, D.C.; Krummen, L. Recombinant Protein Expression for Therapeutic Applications. Curr. Opi. Biotechnol. 2002, 13, 117–123. DOI: 10.1016/S0958-1669(02)00300-2.
  • Kim, N.; Choi, Y.; Jung, S.; Kim, S. Modeling Pichia pastoris Growth on Methanol and Optimizing the Production of a Recombinant Protein, the Heavy-chain Fragment C of Botulinum Neurotoxin, serotype A. Biotechnol. Bioeng. 2000, 70, 1–8.
  • Cregg, J.M.; Cereghino, J.L.; Shi, J.; Higgins, D.R. Recombinant Protein Expression in Pichia pastoris. Mol. Biotechnol. 2000, 16, 23–52.
  • Zhang, W.; Inan, M.; Meagher, M.M. Fermentation Strategies for Recombinant Protein Expression in the Methylotrophic Yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 2000, 5, 275–287. DOI: 10.1007/BF02942184.
  • Looser, V.; Bruhlmann, B.; Bumbak, F.; Stenger, C.; Costa, M.; Camattari, A.; Fotiadis, D.; Kovar, K. Cultivation Strategies to Enhance the Productivity of Pichia pastoris: A Review. Biotechnol. Adv. 2015, 33, 1177–1193. DOI: 10.1016/j.biotechadv.2015.05.008.
  • Prabhu, A.A.; Boro, B.; Bharali, B.; Chakraborty, S.; Dasu, V.V. Gene and Process Level Modulation to Overcome the Bottlenecks of Recombinant Proteins Expression in Pichia pastoris. Cpb. 2018, 18, 1200–1223. DOI: 10.2174/1389201019666180329112827.
  • Javidanbardan, A. Protein Refolding on Ion-exchange Chromatography: Improving Total Mass Recovery and Investigating Separation Factors of Folded and Unfolded States. J. Biotechnol. 2018, 280, S15. DOI: 10.1016/j.jbiotec.2018.06.043.
  • Cregg, J.M.; Tschopp, J.F.; Stillman, C.; Siegel, R.; Akong, M.; Craig, W.S.; Buckholz, R.G.; Madden, K.R.; Kellaris, P.A.; Davis, G.R.; et al. High-level Expression and Efficient Assembly of Hepatitis B Surface Antigen in the Methylotrophic Yeast, Pichia pastoris. Nat. Biotechnol. 1987, 5, 479–485. DOI: 10.1038/nbt0587-479.
  • Hardy, E.; Martı́nez, E.; Diago, D.; Dı́az, R.; González, D.; Herrera, L. Large-scale Production of Recombinant Hepatitis B Surface Antigen from Pichia pastoris. J. Biotechnol. 2000, 77, 157–167. DOI: 10.1016/S0168-1656(99)00201-1.
  • Vassileva, A.; Chugh, D.A.; Swaminathan, S.; Khanna, N. Expression of Hepatitis B Surface Antigen in the Methylotrophic Yeast Pichia pastoris Using the GAP Promoter. J. Biotechnol. 2001, 88, 21–35. DOI: 10.1016/S0168-1656(01)00254-1.
  • Ottone, S.; Nguyen, X.; Bazin, J.; Bérard, C.; Jimenez, S.; Letourneur, O. Expression of Hepatitis B Surface Antigen Major Subtypes in Pichia pastoris and Purification for In Vitro Diagnosis. Protein Expr. Purif. 2007, 56, 177–188. DOI: 10.1016/j.pep.2007.07.008.
  • Liu, R.; Lin, Q.; Sun, Y.; Lu, X.; Qiu, Y.; Li, Y.; Guo, X. Expression, Purification, and Characterization of Hepatitis B Virus Surface Antigens (HBsAg) in Yeast Pichia pastoris. Appl. Biochem. Biotechnol. 2009, 158, 432–444. DOI: 10.1007/s12010-009-8527-x.
  • Mostafaei, M.; Hosseini, S.N.; Khatami, M.; Javidanbardan, A.; Sepahy, A.A.; Asadi, E. Isolation of Recombinant Hepatitis B Surface Antigen with Antibody-conjugated Superparamagnetic Fe3O4/SiO2core-shell Nanoparticles. Protein Expr. Purif. 2018, 145, 1. DOI: 10.1016/j.pep.2017.12.004.
  • Bardiya, N. Expression in and Purification of Hepatitis B Surface Antigen (S-protein) from Methylotrophic Yeast Pichia pastoris. Anaerobe. 2006, 12, 194–203. DOI: 10.1016/j.anaerobe.2006.05.002.
  • Tam, Y.J.; Zeenathul, N.A.; Morvarid, A.R.; Azmi, M.L.M.; Bahaman, A.R.; Lo, S.C.; Tan, J.S. Two-Phase Fed-Batch Modification for 48-Hour Peak Expression of Hepatitis B Surface Antigen in Pichia pastoris Shake Flask System. Cent. Eur. J. Biol. 2014, 9, 749–760.
  • Morvarid, A.R.; Zeenathul, N.A.; Tam, Y.J.; Zuridah, H.; Mohd-Azmi, M.L.; Azizon, B.O. Effect of Glycerol Feed in Methanol Induction Phase for Hepatitis B Surface Antigen Expression in Pichia pastoris Strain KM71. Pertanika J. Sci. Technol. 2012, 20, 31–42.
  • Chauhan, A. K.; Arora, D.; Khanna, N. A Novel Feeding Strategy for Enhanced Protein Production by Fed-batch Fermentation in Recombinant Pichia pastoris. Process Biochem. 1999, 34, 139–145. DOI: 10.1016/S0032-9592(98)00080-6.
  • Lünsdorf, H.; Gurramkonda, C.; Adnan, A.; Khanna, N.; Rinas, U. Virus-like Particle Production with Yeast: Ultrastructural and Immunocytochemical Insights into Pichia pastoris Producing High Levels of the Hepatitis B Surface Antigen. Microb. Cell Fact. 2011, 10, 48.
  • Chen, Y.; Cino, J.; Hart, G.; Freedman, D.; White, C.; Komives, E. A. High Protein Expression in Fermentation of Recombinant Pichia pastoris by a Fed-batch Process. Process. Biochem. 1997, 32, 107–111.
  • Jungo, C.; Marison, I.; Stockar, U. von, Mixed Feeds of Glycerol and Methanol Can Improve the Performance of Pichia pastoris Cultures: A Quantitative Study Based on Concentration Gradients in Transient Continuous Cultures. J. Biotechnol. 2007, 128, 824–837. DOI: 10.1016/j.jbiotec.2006.12.024.
  • Chiruvolu, V.; Cregg, J.M.; Meagher, M.M. Recombinant Protein Production in an Alcohol Oxidase-defective Strain of Pichia pastoris in Fedbatch Fermentations. Enzyme Microb. Technol. 1997, 21, 277–283. DOI: 10.1016/S0141-0229(97)00042-2.
  • Katakura, Y.; Zhang, W.; Zhuang, G.; Omasa, T.; Kishimoto, M.; Goto, Y.; Suga, K.I. Effect of Methanol Concentration on the Production of Human β2- glycoprotein I Domain V by a Recombinant Pichia pastoris: A Simple System for the Control of Methanol Concentration Using a Semiconductor Gas Sensor. J. Ferment. Bioeng. 1998, 86, 482–487. DOI: 10.1016/S0922-338X(98)80156-6.
  • Picotto, L.D.; Sguazza, G.H.; Tizzano, M.A.; Galosi, C.M.; Cavalitto, S.F.; Pecoraro, M.R. An Effective and Simplified DO-stat Control Strategy for Production of Rabies Glycoprotein in Pichia pastoris. Protein Expr. Purif. 2017, 132, 124–130. DOI: 10.1016/j.pep.2017.02.004.
  • Curvers, S.; Linnemann, J.; Klauser, T.; Wandrey, C.; Takors, R. Recombinant Protein Production with Pichia pastoris in Continuous Fermentation – Kinetic Analysis of Growth and Product Formation. Chemie-Ingenieur-Technik. 2001, 2, 229–235.
  • Prabhu, A.A.; Bharali, B.; Singh, A.K.; Allaka, M.; Sukumar, P.; Veeranki, V.D. Engineering Folding Mechanism through Hsp70 and Hsp40 Chaperones for Enhancing the Production of Recombinant Human Interferon Gamma (rhIFN-γ) in Pichia pastoris Cell Factory. Chem. Eng. Sci. 2018, 181, 58–67. DOI: 10.1016/j.ces.2018.02.003.
  • Prabhu, A.A.; Veeranki, V.D. Metabolic Engineering of Pichia pastoris GS115 for Enhanced Pentose Phosphate Pathway (PPP) flux toward Recombinant Human Interferon Gamma (hIFN-γ) Production. Mol. Biol. Rep. 2018, 45, 961–972. DOI: 10.1007/s11033-018-4244-2.
  • Riesenberg, D.; Guthke, R. High-Cell-Density Cultivation of Microorganisms. Appl. Microbiol. Biotechnol. 1999, 51, 422–430.
  • Mears, L.; Stocks, S.M.; Sin, G.; Gernaey, K.V. A Review of Control Strategies for Manipulating the Feed Rate in Fed-batch Fermentation Processes. J. Biotechnol. 2017, 245, 34–46. DOI: 10.1016/j.jbiotec.2017.01.008.
  • Gurramkonda, C.; Adnan, A.; Gäbel, T.; Lünsdorf, H.; Ross, A.; Nemani, S.K.; Swaminathan, S.; Khanna, N.; Rinas, U. Simple High-cell Density Fed-batch Technique for High-level Recombinant Protein Production with Pichia pastoris: Application to Intracellular Production of Hepatitis B Surface Antigen. Microb. Cell Fact. 2009, 8, 13.
  • Hosseini, S.N.; Rahimi, A.; Javidanbardan, A.; Khatami, M.; Shahali, M.; Hassanzadeh, S.M. Optimizing Cell Density of Pichia pastoris for Production of Recombinant Hepatitis B Surface Antigen via Employing Short-period Continuous Operation. N. Biotechnol. 2018, 44, S157. DOI: 10.1016/j.nbt.2018.05.1162.
  • Curvers, S.; Brixius, P.; Klauser, T.; Thömmes, J.; Weuster-Botz, D.; Takors, R.; Wandrey, C. Human Chymotrypsinogen B Production with Pichia pastoris by Integrated Development of Fermentation and Downstream Processing. Part 1. Fermentation. Biotechnol. Prog. 2001, 17, 495–502. DOI: 10.1021/bp000164j.
  • Gohari, M.; Hosseini, S.N.; Sharifnia, S.; Khatami, M. Enhancement of Metal Ion Adsorption Capacity of Saccharomyces cerevisiae’s Cells by Using Disruption Method. J. Taiwan Inst. Chem. Eng. 2013, 44, 637–645. DOI: 10.1016/j.jtice.2013.01.002.
  • Eissazadeh, S.; Moeini, H.; Dezfouli, M.G.; Heidary, S.; Nelofer, R.; Abdullah, M.P. Production of Recombinant Human Epidermal Growth Factor in Pichia pastoris. Brazilian J. Microbiol. 2017, 48, 286–293. DOI: 10.1016/j.bjm.2016.10.017.
  • Prabhu, A.A.; Mandal, B.; Dasu, V.V. Medium Optimization for High Yield Production of Extracellular Human Interferon-γ from Pichia pastoris: A Statistical Optimization and Neural Network-Based Approach. Korean J. Chem. Eng. 2017, 34, 1109–1121. DOI: 10.1007/s11814-016-0358-1.
  • Sewsynker-Sukai, Y.; Faloye, F.; Kana, E.B.G. Artificial Neural Networks: An Efficient Tool for Modelling and Optimization of Biofuel Production (a Mini Review). Biotechnol. Biotechnol. Equip. 2017, 31, 221–235. DOI: 10.1080/13102818.2016.1269616.
  • Jenzsch, M.; Simutis, R.; Eisbrenner, G.; Stückrath, I.; Lübbert, A. Estimation of Biomass Concentrations in Fermentation Processes for Recombinant Protein Production. Bioprocess Biosyst. Eng. 2006, 29, 19–27. DOI: 10.1007/s00449-006-0051-6.
  • Nicoletti, M. C.; Jain, L. C.; Giordano, R. C. Computational Intelligence Techniques as Tools for Bioprocess Modelling, Optimization, Supervision and Control. Stud. Computat. Intell. 2009, 218, 1.
  • Kiviharju, K.; Salonen, K.; Moilanen, U.; Eerikäinen, T. Biomass Measurement Online: The Performance of In Situ Measurements and Software Sensors. J. Ind. Microbiol. Biotechnol. 2008, 35, 657–665. DOI: 10.1007/s10295-008-0346-5.
  • Beutel, S.; Henkel, S. In Situ Sensor Techniques in Modern Bioprocess Monitoring. Appl. Microbiol. Biotechnol. 2011, 91, 1493. DOI: 10.1007/s00253-011-3470-5.
  • Schäpper, D.; Alam, M.N.H.Z.; Szita, N.; Eliasson Lantz, A.; Gernaey, K.V. Application of Microbioreactors in Fermentation Process Development: A Review. Anal. Bioanal. Chem. 2009, 395, 679–695. DOI: 10.1007/s00216-009-2955-x.
  • Mross, S.; Zimmermann, T.; Winkin, N.; Kraft, M.; Vogt, H. In Integrated Multi-Sensor System for Parallel In-Situ Monitoring of Cell Nutrients, Metabolites and Cell Mass in Biotechnological Processes. Sensors and Actuators B: Chemical. 2015, 236, 937–946. DOI: 10.1016/j.snb.2016.03.086.
  • Montague, G.; Morris, J. Neural-Network Contributions in Biotechnology. Trends Biotechnol. 1994, 12, 312–324.
  • Geethalakshmi, S.; Pappa, N. In Artificial Neural Network Based Soft Sensor for Fermentation of Recombinant Pichia pastoris. International Conference on Advances in Computer Engineering, 2010, 148–152.
  • Glassey, J.; Ignova, M.; Ward, A.C.; Montague, G.A.; Morris, A.J. Bioprocess supervision: Neural Networks and Knowledge Based Systems, Journal of Biotechnology. 1997, 52(3), 201–205. DOI: 10.1016/S0168-1656(96)01645-8.
  • Kroll, P.; Hofer, A.; Ulonska, S.; Kager, J.; Herwig, C. Model-Based Methods in the Biopharmaceutical Process Lifecycle. Pharm. Res. 2017, 34, 2596–2613. DOI: 10.1007/s11095-017-2308-y.
  • Di Massimo, C.; Montague, G.A.; Willis, M.J.; Tham, M.T.; Morris, A.J. Towards Improved Penicillin Fermentation via Artificial Neural Networks. Comput. Chem. Eng. 1992, 16, 283–291. DOI: 10.1016/0098-1354(92)80048-E.
  • Bošković, J.D.; Narendra, K.S. Comparison of Linear, Nonlinear and Neural-Network-Based Adaptive Controllers for a Class of Fed-batch Fermentation Processes. Automatica. 1995, 31, 817–840. DOI: 10.1016/0005-1098(94)00139-A.
  • Linko, P.; Zhu, Y.H. Neural Network Modelling for Real-Time Variable Estimation and Prediction in the Control of Glucoamylase Fermentation. Process Biochem. 1992, 27, 275–283. DOI: 10.1016/0032-9592(92)85012-Q.
  • Nagy, Z.K. Model Based Control of a Yeast Fermentation Bioreactor Using Optimally Designed Artificial Neural Networks. Chem. Eng. J. 2007, 127, 95–109. DOI: 10.1016/j.cej.2006.10.015.
  • Rahimi, A.; Nezamedin Hosseini, S.; Karimi, A.; Aghdasinia, H.; Arabi Mianroodi, R. Enhancing the Efficiency of Recombinant Hepatitis B Surface Antigen Production in Pichia pastoris by Employing Continuous Fermentation. Biochem. Eng. J. 2018, 141, 112–119.
  • Gazor, M.; Talesh, S.S.A.; Kavianpour, A.; Khatami, M.; Javidanbardan, A.; Hosseini, S.N.A. Novel Cell Disruption Approach: Effectiveness of Laser-induced Cell Lysis of Pichia pastoris in the Continuous System. Biotechnol. Bioproc. E. 2018, 23, 49–54. DOI: 10.1007/s12257-017-0261-6.
  • Mojarrad Moghanloo, G.M.; Khatami, M.; Javidanbardan, A.; Hosseini, S.N. Enhancing Recovery of Recombinant Hepatitis B Surface Antigen in Lab-scale and Large-scale Anion-exchange Chromatography by Optimizing the Conductivity of Buffers. Protein Expr. Purif. 2018, 141, 25–31. DOI: 10.1016/j.pep.2017.08.011.
  • Nakano, A.; Lee, C.Y.; Yoshida, A.; Matsumoto, T.; Shiomi, N.; Katoh, S. Effects of Methanol Feeding Methods on Chimeric Alpha-amylase Expression in Continuous Culture of Pichia pastoris. J. Biosci. Bioeng. 2006, 101, 227–231. DOI: 10.1263/jbb.101.227.
  • Nezamedin Hosseini, S.; Javidanbardan, A.; Sadat Alizadeh Salim, B.; Khatami, M. Large-Scale Purification of Recombinant Hepatitis B Surface Antigen from Pichia pastoris with Non-Affinity Chromatographic Methods as a Substitute to Immunoaffinity Chromatography. Prep. Biochem. Biotechnol. 2018, DOI: 10.1080/10826068.2018.1487854.
  • Hosseini, S.N.; Ghaisari, P.; Sharifnia, S.; Khatami, M.; Javidanbardan, A. Improving the Recovery of Clarification Process of Recombinant Hepatitis B Surface Antigen in Large-scale by Optimizing Adsorption-desorption Parameters on Aerosil-380. Prep. Biochem. Biotechnol. 2018, 48, 490–497.
  • Rebnegger, C.; Vos, T.; Graf, A.B.; Valli, M.; Pronk, J.T.; Daran-Lapujade, P.; Mattanovicha, D. Pichia Pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates. Appl. Environ. Microbiol. 2016, 82, AEM-00638.
  • Jacobs, P.P.; Inan, M.; Festjens, N.; Haustraete, J.; Hecke, A.; Van, Contreras, R.; Meagher, M.M.; Callewaert, N. Fed-Batch Fermentation of GM-CSF-Producing Glycoengineered Pichia pastoris Under Controlled Specific Growth Rate. Microb. Cell Fact. 2010, 9, 93.
  • Gazor, M.; Ashraf Talesh, S.S.; Hosseini, S.N.; Javidanbardan, A.; Khatami, M. High Recovery of Intracellular Recombinant HBsAg from Pichia pastoris via Continuous Pulsed Laser Cell Disruption System Optimized by Response Surface Methodology. Biotechnol. Appl. Biochem. 2019, DOI: 10.1002/bab.1701
  • Ehsani, M.; Chaichi, M.J.; Nezammeddin Hosseini, S. Comparison of CuO Nanoparticle and CuO/MWCNT Nanocomposite for Amplification of Chemiluminescence Immunoassay for Detection of the Hepatitis B Surface Antigen in Biological Samples. Sensor Actuat. B Chem. 2017, 247, 319–328. DOI: 10.1016/j.snb.2017.02.019.
  • Warnes, M.R.; Glassey, J.; Montague, G.A.; Kara, B. Application of Radial Basis Function and Feedforward Artificial Neural Networks to the Escherichia coli Fermentation Process. Neurocomputing. 1998, 20, 67–82. DOI: 10.1016/S0925-2312(98)00025-3.
  • Glassey, J.; Montague, G.A.; Ward, A.C.; Kara, B.V. Enhanced Supervision of Recombinant E. coli Fermentation via Artificial Neural Networks. Process Biochem. 1994, 29, 387–398. DOI: 10.1016/0032-9592(94)87009-8.
  • Chen, L.Z.; Nguang, S.K.; Chen, X.D.; Li, X. M. Modelling and Optimization of Fed-Batch Fermentation Processes Using Dynamic Neural Networks and Genetic Algorithms. Biochem. Eng. J. 2004, 22, 51–61.
  • Gadkar, K.G.; Mehra, S.; Gomes, J. On-line Adaptation of Neural Networks for Bioprocess Control. Comput. Chem. Eng. 2005, 29, 1047–1057. DOI: 10.1016/j.compchemeng.2004.11.004.
  • Bollok, M.; Resina, D.; Valero, F.; Ferrer, P. Recent Patents on the Pichia Pastoris Expression System: Expanding the Toolbox for Recombinant Protein Production. Biotechnology. 2009, 3, 192–201. DOI: 10.2174/187220809789389126.
  • Çalik, P.; Ata, Ö.; Güneş, H.; Massahi, A.; Boy, E.; Keskin, A.; Öztürk, S.; Zerze, G.H.; Özdamar, T.H. Recombinant Protein Production in Pichia pastoris under Glyceraldehyde-3-phosphate Dehydrogenase Promoter: From Carbon Source Metabolism to Bioreactor Operation Parameters. Biochem. Eng. J. 2015, 95, 20–36. DOI: 10.1016/j.bej.2014.12.003.
  • Cereghino, J.L.; Cregg, J.M. Heterologous Protein Expression in the Methylotrophic Yeast Pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66. DOI: 10.1016/S0168-6445(99)00029-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.