178
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation of hepatic stimulator substance from neonatal porcine liver by enzymatic hydrolysis and characterization of the liver proteins by LC-MS/MS bottom-up approach

ORCID Icon, , , &

References

  • Michalopoulos, G.K. Hepatostat: Liver Regeneration and Normal Liver Tissue Maintenance. Hepatology. 2017, 65, 1384–1392. DOI: 10.1002/hep.28988.
  • Michalopoulos, G.K. Liver Regeneration after Partial Hepatectomy: Critical Analysis of Mechanistic Dilemmas. Am. J. Pathol. 2010, 176, 2–13. DOI: 10.2353/ajpath.2010.090675.
  • Forbes, S.J.; Newsome, P.N. Liver Regeneration - Mechanisms and Models to Clinical Application. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 473–485. DOI: 10.1038/nrgastro.2016.97.
  • Labrecque, D.R. Hepatic Stimulator Substance Discovery, Characteristics and Mechanism of Action. Digest. Dis. Sci. 1991, 36, 669–673. DOI: 10.1007/BF01297036.
  • Forte, G.; Minieri, M.; Cossa, P.; Antenucci, D.; Sala, M.; Gnocchi, V.; Fiaccavento, R.; Carotenuto, F.; Vito, P.D.; Baldini, P.M. Hepatocyte Growth Factor Effects on Mesenchymal Stem Cells: Proliferation, Migration, and Differentiation. Stem Cells. 2006, 24, 23–33. DOI: 10.1634/stemcells.2004-0176.
  • Hu, Z.; Geng, J.; Liang, D.; Luo, M.; Li, M. Hepatocyte Growth Factor Protects Human Embryonic Stem Cell Derived-neural Progenitors from Hydrogen Peroxide-induced Apoptosis. Eur. J. Pharmacol. 2010, 645, 23–31. DOI: 10.1016/j.ejphar.2010.07.011.
  • Labrecque, D.R.; Pesch, L.A. Preparation and Partial Characterization of Hepatic Regenerative Stimulator Substance (SS) from Rat Liver. J. Physiol. 1975, 248, 273–284. DOI: 10.1113/jphysiol.1975.sp010973.
  • Li, W.; Zhang, J.; An, W. The Conserved CXXC Motif of Hepatic Stimulator Substance is Essential for Its Role in Mitochondrial Protection in H2O2-induced Cell Apoptosis. FEBS Lett. 2010, 584, 3929–3935. DOI: 10.1016/j.febslet.2010.08.043.
  • Wu, Y.; Zhang, J.; Dong, L.; Li, W.; Jia, J.; An, W. Hepatic Stimulator Substance Mitigates Hepatic Cell Injury through Suppression of the Mitochondrial Permeability Transition. Febs. J. 2010, 277, 1297–1309. DOI: 10.1111/j.1742-4658.2010.07560.x.
  • Zhang, J.; Li, Y.; Jiang, S.; Yu, H.; An, W. Enhanced Endoplasmic Reticulum SERCA Activity by Overexpression of Hepatic Stimulator Substance Gene Prevents Hepatic Cells from ER Stress-induced Apoptosis. Am. J. Physiol. Cell Physiol. 2014, 306, C279–C290. DOI: 10.1152/ajpcell.00117.2013.
  • Gandhi, C.R.; Chaillet, J.R.; Nalesnik, M.A.; Kumar, S.; Dangi, A.; Demetris, A.J.; Ferrell, R.; Wu, T.; Divanovic, S.; Stankeiwicz, T.; et al. Liver-specific Deletion of Augmenter of Liver Regeneration Accelerates Development of Steatohepatitis and Hepatocellular Carcinoma in Mice. Gastroenterology. 2015, 148, 379–391. DOI: 10.1053/j.gastro.2014.10.008.
  • Labrecque, D.R.; Gregory, S.; Steven, F.; Michelle, W.; James, B. Purification and Physical-chemical Characterization of Hepatic-stimulator Substance. Hepatology. 1987, 7, 100–106. https://doi.org/https://doi.org/10.1002/hep.1840070121. DOI: 10.1002/hep.1840070121.
  • Yi, X.; Song, M.; Yuan, Y.; Zhang, X.; Chen, W.; Li, J.; Tong, M.; Liu, G.; You, S.; Kong, X. Hepatic Stimulator Substance Alleviates Toxin-induced and Immune-mediated Liver Injury and Fibrosis in Rats. Dig. Dis. Sci. 2012, 57, 2079–2087. DOI: 10.1007/s10620-012-2168-6.
  • Francavilla, A.; DiLeo, A.; Polimeno, L.; Gavaler, J.; Pellicci, R.; Todo, S.; Kam, I.; Prelich, J.; Makowka, L.; Starzl, T.E. The Effect of Hepatic Stimulatory Substance, Isolated from Regenerating Hepatic Cytosol, and 50,000 and 300,000 Subfractions in Enhancing Survival in Experimental Acute Hepatic Failure in Rats Treated with D-Galactosamine. Hepatology. 1986, 6, 1346–1351. DOI: 10.1002/hep.1840060621.
  • Fleig, W.E.; Hoss, G. Partial Purification of Rat Hepatic Stimulator Substance and Characterization of its Action on Hepatoma Cells and Normal Hepatocytes. Hepatology. 1989, 9, 240–248. DOI: 10.1002/hep.1840090213.
  • Pan, A.; Zeng, H.; Foua, G.B.; Alain, C.; Li, Y. Enzymolysis of Chitosan by Papain and Its Kinetics. Carbohyd. Polym. 2016, 135, 199–206. DOI: 10.1016/j.carbpol.2015.08.052.
  • Chen, X.; Luo, Y.; Qi, B.; Luo, J.; Wan, Y. Improving the Hydrolysis Efficiency of Soy Sauce Residue Using Ultrasonic Probe-assisted Enzymolysis Technology. Ultrason. Sonochem. 2017, 35, 351–358. DOI: 10.1016/j.ultsonch.2016.10.013.
  • Roberts, P.R.; Burney, J.D.; Black, K.W.; Zaloga, G.P. Effect of Chain Length on Absorption of Biologically Active Peptides from the Gastrointestinal Tract. Digestion. 1999, 60, 332–337. DOI: 10.1159/000007679.
  • Wang, B.; Li, Z.; Chi, C.; Zhang, Q.; Luo, H. Preparation and Evaluation of Antioxidant Peptides from Ethanol-soluble Proteins Hydrolysate of Sphyrna Lewini Muscle. Peptides 2012, 36, 240–250. DOI: 10.1016/j.peptides.2012.05.013.
  • Zhang, M.; Mu, T.; Sun, M. Purification and Identification of Antioxidant Peptides from Sweet Potato Protein Hydrolysates by Alcalase. J. Funct. Foods 2014, 7, 191–200. DOI: 10.1016/j.jff.2014.02.012.
  • Jiang, H.; Tong, T.; Sun, J.; Xu, Y.; Zhao, Z.; Liao, D. Purification and Characterization of Antioxidative Peptides from Round Scad (Decapterus Maruadsi) Muscle Protein Hydrolysate. Food Chem. 2014, 154, 158–163. DOI: 10.1016/j.foodchem.2013.12.074.
  • Chi, C.; Hu, F.; Wang, B.; Ren, X.; Deng, S.; Wu, C. Purification and Characterization of Three Antioxidant Peptides from Protein Hydrolyzate of Croceine Croaker (Pseudosciaena Crocea) Muscle. Food Chem. 2015, 168, 662–667. DOI: 10.1016/j.foodchem.2014.07.117.
  • Liu, J.; Jin, Y.; Lin, S.; Jones, G.S.; Chen, F. Purification and Identification of Novel Antioxidant Peptides from Egg White Protein and Their Antioxidant Activities. Food Chem. 2015, 175, 258–266. DOI: 10.1016/j.foodchem.2014.11.142.
  • Kim, S.Y.; Park, P.S.W.; Rhee, K.C. Functional Properties of Proteolytic Enzyme Modified Soy Protein Isolate. J. Agric. Food Chem. 1990, 38, 651–656. DOI: 10.1021/jf00093a014.
  • Pan, A.; Zeng, H.; Alain, G.B.F.C.; Feng, B. Heat-pretreatment and Enzymolysis Behavior of the Lotus Seed Protein. Food Chem. 2016, 201, 230–236. DOI: 10.1016/j.foodchem.2016.01.069.
  • China Food and Drug Administration. National Drug Standards, WS1-(X-073)-2003Z. Available at: https://www.drugfuture.com/standard/CN/%E6%96%B0%E8%8D%AF%E8%BD%AC%E6%AD%A3%E6%A0%87%E5%87%86%E7%AC%AC34%E5%86%8C/%E4%BF%83%E8%82%9D%E7%BB%86%E8%83%9E%E7%94%9F%E9%95%BF%E7%B4%A0%E9%A2%97%E7%B2%92.pdf.
  • Xie, Z.; Liu, L.; Zhu, W.; Liu, H.; Wang, L.; Zhang, J.; Chen, C.; Zhu, H. The Protective Effect of Polymerized Porcine Hemoglobin (pPolyHb) on Transient Focal Cerebral Ischemia/Reperfusion Injury. Artif. Cell. Nanomed. B 2015, 43, 180–185. DOI: 10.3109/21691401.2015.1037886.
  • Zuo, T.; Cao, L.; Li, X.; Zhang, Q.; Xue, C.; Tang, Q. The Squid Ink Polysaccharides Protect Tight Junctions and Adherens Junctions from Chemotherapeutic Injury in the Small Intestinal Epithelium of Mice. Nutr. Cancer 2015, 67, 364–371. DOI: 10.1080/01635581.2015.989369.
  • Moreno-Gordaliza, E.; Cañas, B.; Palacios, M.A.; Gómez-Gómez, M.M. Novel Insights into the Bottom-up Mass Spectrometry Proteomics Approach for the Characterization of Pt-binding Proteins: The Insulin-cisplatin Case Study. Analyst 2010, 135, 1288–1298. DOI: 10.1039/b927110d.
  • Martelli, C.; Iavarone, F.; Vincenzoni, F.; Rossetti, D.V.; D’Angelo, L.; Tamburrini, G.; Tamburrini, M.; Rocco, C.D.; Messana, I.; Castagnola, M. Proteomic Characterization of Pediatric Craniopharyngioma Intracystic Fluid by LC-MS Top-down/bottom-up Integrated Approaches. Electrophoresis. 2014, 35, 2172–2183. https://doi.org/10.1002/elps.201300578.
  • Du, Y.; Wu, D.; Guan, Y. Further Investigation of a Peptide Extraction Method with Mesoporous Silica Using High-performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Sep. Sci. 2016, 39, 2156–2163. DOI: 10.1002/jssc.201501354.
  • Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-scale Gene Function Analysis with the PANTHER Classification System. Nat. Protoc. 2013, 8, 1551–1566. DOI: 10.1038/nprot.2013.092.
  • Moore, N.H.; Costa, L.G.; Shaffer, S.A.; Goodlett, D.R.; Guizzetti, M. Shotgun Proteomics Implicates Extracellular Matrix Proteins and Protease Systems in Neuronal Development Induced by Astrocyte Cholinergic Stimulation. J. Neurochem. 2009, 108, 891–908. DOI: 10.1111/j.1471-4159.2008.05836.x.
  • Dianzani, I.; Sanctis, L.; Smooker, P.M.; Gough, T.J.; Alliaudi, C.; Brusco, A.; Spada, M.; Blau, N.; Dobos, M.; Zhang, H.; et al. Dihydropteridine Reductase Deficiency: Physical Structure of the QDPR Gene, Identification of Two New Mutations and Genotype-phenotype Correlations. Hum. Mutat. 1998, 12, 267–273. DOI: 10.1002/(SICI)1098-1004(1998)12:4<267::AID-HUMU8>3.0.CO;2-C.
  • Yamaguchi, M. The Role of Regucalcin in Nuclear Regulation of Regenerating Liver. Biochem. Bioph. Res. Co. 2000, 276, 1–6. DOI: 10.1006/bbrc.2000.3359.
  • Timm, S.; Wittmiß, M.; Gamlien, S.; Ewald, R.; Florian, A.; Frank, M.; Wirtz, M.; Hell, R.; Fernie, A.R.; Bauwe, H. Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of Arabidopsis thaliana. Plant Cell 2015, 27, 1968–1984. DOI: 10.1105/tpc.15.00105.
  • Guengerich, F.P.; Michael, R.; Waterman, M.R.; Egli, M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol. Sci. 2016, 37, 625–640. DOI: 10.1016/j.tips.2016.05.006.
  • Venkat, S.; Gregory, C.; Sturges, J.; Gan, Q.; Fan, C. Studying the Lysine Acetylation of Malate Dehydrogenase. J. Mol. Biol. 2017, 429, 1396–1405. DOI: 10.1016/j.jmb.2017.03.027.
  • Yamaguchi, M.; Murata, T. Exogenous Regucalcin Suppresses the Growth of Human Liver Cancer HepG2 Cells in Vitro. Oncol. Rep. 2018, 39, 2924–2930. https://doi.org/10.3892/or.2018.6357.
  • Butler, S.L.; Dong, H.; Cardona, D.; Jia, M.; Zheng, R.; Zhu, H.; Crawford, J.M.; Li, C. The Antigen for Hep Par 1 Antibody is the Urea Cycle Enzyme Carbamoyl Phosphate Synthetase 1. Lab. Invest. 2008, 88, 78–88. DOI: 10.1038/labinvest.3700699.
  • Häberle, J.; Shchelochkov, O.A.; Wang, J.; Katsonis, P.; Hall, L.; Reiss, S.; Eeds, A.; Willis, A.; Yadav M, Summar, S, et al. Molecular Defects in Human Carbamoyl Phosphate Synthetase I: Mutational Spectrum, Diagnostic and Protein Structure Considerations. Hum. Mutat. 2011, 32, 576–589. https://doi.org/10.1002/humu.21406.
  • Li, T.; Su, Y.; Mei, Y.; Leng, Q.; Leng, B.; Liu, Z.; Stass, S.A.; Jiang, F. ALDH1A1 is a Marker for Malignant Prostate Stem Cells and Predictor of Prostate Cancer Patients’ Outcome. Lab. Invest. 2010, 90, 234–244. DOI: 10.1038/labinvest.2009.127.
  • Su, Y.; Qiu, Q.; Zhang, X.; Jiang, Z.; Leng, Q.; Liu, Z.; Stass, S.A.; Jiang, F. ALDH1A1 Positive Cell Population is Enriched in Tumor-initiating Cells and Associated with Progression of Bladder Cancer. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 327–337. DOI: 10.1158/1055-9965.EPI-09-0865.
  • Zámocký, M.; Koller, F. Understanding the Structure and Function of Catalases: Clues from Molecular Evolution and in Vitro Mutagenesis. Prog. Biophys. Mol. Biol. 1999, 72, 19–66. DOI: 10.1016/S0079-6107(98)00058-3.
  • Schrader, M.; Fahimi, H.D. Peroxisomes and Oxidative Stress. BBA-Mol. Cell Res. 2006, 1763, 1755–1766. DOI: 10.1016/j.bbamcr.2006.09.006.
  • Zamocky, M.; Furtmüller, P.G.; Obinger, C. Evolution of Catalases from Bacteria to Humans. Antioxid. Redox Signal. 2008, 10, 1527–1548. DOI: 10.1089/ars.2008.2046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.